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I. INTRODUCTION 

Today, much effort is dedicated to the development of Brain Computer Interface (BCI) 

systems that would allow direct brain interaction with the environment. The reason for the 

use of the BCI is that it could accept commands directly from the human brain without 

actual physical activity (movement, voice command, sipping and puffing, etc.). 

One important task for the BCI is to detect the intention to move. Voluntary movement 

results from the complex interaction between different cortical and subcortical circuits. The 

neuronal activity that has been suggested for the recognition of intention for movement 

includes event-related desynchronization (ERD) [1] and event-related synchronization (ERS) 

[2] from the skull recordings (EEG). The analysis of ERD and ERS provides information on 

the dynamic pattern of cortical activation and idling occurring before motor activity.  

ERD BCI systems encompass the range of BCIs that analyse and classify the dynamics 

(ERD and ERS) of either one single-frequency component, such as a BCI based on µ or β 

rhythms or multiple components of sensorimotor rhythms [3], [4]. One of the first reports on 

classifying ERD/ERS patterns induced by motor imagery appeared in the early 1990s [5]. 

Several years later, other systems began to use ERD/ERS patterns as features for single-trial 

EEG classification [6]. A recent study on 14 fully BCI-naive subjects in [4] showed that more 

than half of them can perform at >84% accuracy in their very first BCI session, using spatial 

filters that maximize variance of signals of one condition and at the same time minimize 

variance of signals of another condition. Another research used spatio-temporal analysis to 

classify the EEG recorded during voluntary left versus right finger movement tasks and 

produced a classification accuracy of up to 92.1% on the data from five subjects [7]. Work 

published in [8] combined the ERD and steady-state visual evoked potential approach to 

designing BCI systems and had a mean success rate of 75% for the ERD and 80% for the 

hybrid. 

In this thesis, I present results from the study that included five healthy subjects. I 

studied the detection of movement in two conditions: 1) movements during playing a 

Nintendo Wii game, and 2) self-paced voluntary wrist movements but when the Nintendo Wii 

game was turned off. 
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The goal of this reseach was to determine if the established ERD-based movement 

detection method can be used while playing a video game, and not just in laboratory 

conditions. The results of this study are of interest for developing the technique that can be 

used for the therapy of post-stroke hemiplegic individuals [9]. 

This thesis is presented in six sections. This first chapter was introductory, serving to 

inform the reader of the goal of the eperiment and the history of similar experiments. Second 

chapter eplains the theoretical concepts behind the research. Basics of 

electroencephalography, neurological sources, and the means of acquisition are given. In the 

third chapter, the used equipment is described, as are the methods used for data acquisition 

and signal processing. Results of the experiment are listed in the fourth chapter, and 

discussed in the fifth. 

II. BRAIN ACTIVITY MEASUREMENT 

A. Brain-Computer Interface (BCI) 

BCI is a direct communication pathway between a brain and an external device. It gives 

its users communication and control channels that do not depend on the brain’s normal 

output pathways of peripheral nerves and muscles. BCIs are often aimed at assisting, 

augmenting or repairing human cognitive or sensory-motor functions. BCI systems, 

therefore, are especially useful for severely disabled, or locked-in, individuals with no reliable 

muscular control to interact with their surroundings. Locked-in syndrome can be caused, for 

example, by amyotrophic lateral sclerosis (ALS), brainstem stroke, mitochondrial disease, 

spinal-cord injury, traumatic-brain injury and even later-stage cerebral palsy. Despite these 

sufferers being completely physically paralyzed and unable to speak, they are however, 

cognitively intact and alert and thus have a need to communicate. Despite this being a 

principal motivation, more and more media attention has been attributed to exploring the 

full potential of this communication medium for the wider audience in areas such as 

multimedia applications and video games. 

A number of invasive or noninvasive techniques exist that can monitor brain activity. 

These include, for example, functional Magnetic Resonance Imaging (fMRI), 

Magnetoencephalography (MEG), Positron Emission Tomography (PET), Single Photon 

Emission Computer Tomography (SPECT) and Electroencephalography (EEG). Of these, 

EEG is the only one extensively used in BCI research because it is the least expensive, the 

equipment is portable, and has a high enough temporal resolution to facilitate real-time 

implementation [10]. Thet is why the rest of this chapter will be dedicated to EEG-based BCI 

solutions. 

Communication or control based on BCI technology requires patterns of brain activity 

that can be consciously generated or controlled by a subject and ultimately clearly 

recognizable by a computer system. The performances of different mental tasks generate 

different EEG responses and hence can be translated into a control codebook for the user, 

assuming the BCI system can be trained to decipher the associated EEG activity. The 

simplest approach to generating different EEG patterns is to ensure that the mental tasks 

activate different parts of the brain. For example, the imagination of right hand movements 
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should activate the left motor cortex and the imagination of left hand movements the right 

motor cortex. Another approach requires the user to perform lengthy training sessions in a 

biofeedback environment to master the skill of being able to self-regulate one’s brain activity. 

A BCI system comprises a set of sensory components (electrodes positioned on the skull 

for recording the electrical field from the neurons in the brain, magnetic sensors, like 

superconducting quantum interference devices (SQUID), positioned in the vicinity of the 

skull assessing the magnetic field generated by the neurons [11]) that enables the 

acquisition, a system for signal processing and intelligent recognition of events, and an 

external device to interact with the environment. 

A BCI can be either synchronous, when mental activities are triggered by external stimuli 

or asynchronous, in which the user decides that the resultant control signal be generated. 

The former case is computer-driven and only a small segment of the EEG that is time-lockd 

to the trigger has to be analyzed. The latter is user-driven and the EEG signals have to be 

continuously analyzed and classified. 

 

Figure 1. Simplified processing stages in a BCI system 

B. Electroencephalography (EEG) 

EEG is a noninvasive technique for the recording of electrical activity along the scalp 

produced by the firing of neurons within the brain [12]. Neurons, or nerve cells, are 

electrically active cells that are responsible for carrying out the brain's functions. Neurons 

create action potentials, discrete electrical signals that travel down axons and cause the 

release of chemical neurotransmitters at the synapse, which is an area of near contact 

between two neurons. The neurotransmitter causes an electric current within the dendrite or 

of the post-synaptic neuron. This neuron then synapses on other neurons, and so on. The 

activity of a single cortical neuron cannot be measured on the scalp due to thick layers of 

tissue (fluids, bones, and skin) which attenuate the electrical signal when it propagates 

toward the electrode. However, the joint activity of millions of cortical neurons, at a depth 

down to several millimeters, produces an electrical field which is sufficiently strong to be 

measured on the scalp [13]. 

Richard Caton was the first scientist to have recorded the electrical activity of the brain in 

1875. He had used a galvanometer to observe electrical impulses from the surfaces of living 

brains in animal subjects. In 1929. Hans Berger recorded human EEG in the duration of one 

to three minutes on photographic paper, and it included the description of the alpha rhythm 
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as the major component of the EEG signals. Subsequent research revealed a connection 

between the EEG physiological states, such as sleep and wakefulness. 

 

Figure 2. First published Electroencephalogram of a human. The top trace is the EEG recorded from a 

young boy, the bottom trace is a 10 Hz frequency reference. [14] 

Ongoing brain activity is recorded in the absence of an explicit task, such as sensory input 

or motor output, as opposed to the recording of evoked potentials, i.e. brain activity that is 

induced by sensory stimuli or motor responses. Evoked potential amplitudes tend to be low in 

comparison to the background of ongoing EEG and other biological signals and ambient 

noise, so signal averaging is usually required. The signal is time-locked to the stimulus and 

most of the noise occurs randomly, allowing the noise to be averaged out with averaging of 

repeated responses.  

 
Figure 3. An example of EEG recording equipment 

The electrical signal which originates from the brain’s spontaneous activity is variable 

and irregular in nature, and is classified as a continual stochastic signal. Simultaneously, 

distinctive rhythms exist and change with age and from one state of to another, such as 

wakefulness and sleep. Signals recorded from the scalp have, in general, amplitudes ranging 

from a few microvolts to approximately 100 µV and a frequency content ranging from 0.5 to 

30-40 Hz. The amplitude of the EEG signal is related to the degree of synchrony with which 

the cortical neurons interact. Synchronous excitation of a group of neurons produces a large-

amplitude signal on the scalp because the signals originating from individual neurons will 

add up in a time-coherent fashion. On the other hand, asynchronous excitation of the 

neurons results in an irregular-looking EEG with low-amplitude waveforms. High-

frequency/low-amplitude rhythms reflect an active brain associated with alertness or dream 

sleep, while low-frequency/large-amplitude rhythms are associated with drowsiness and 

nondreaming sleep states. “This relationship is logical because when the cortex is most 

1. Electrode cap 

2. Amplifier and filter 

3. ADC and data storage 
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actively engaged in processing information, whether generated by sensory input or by some 

internal process, the activity level of cortical neurons is relatively high but also relatively 

unsynchronized. In other words, each neuron, or very small group of neurons, is vigorously 

involved in a slightly different aspect of a complex cognitive task; it fires rapidly, but not 

quite simultaneously with most of itsneighbors. This leads to low synchrony, so the EEG 

amplitude is low. By contrast, during deep sleep, cortical neurons are not engaged in 

information processing, and large numbers of them are phasically excited by a common, 

rhythmic input. In this case synchrony is high, so the EEG amplitude is large [15]”. 

Electroencephalographic rhythms, also referred to as background rhythms, are 

conventionally classified into five different frequency bands. The interpretation of these 

bands in terms of "normal" or "abnormal" is relative and depends on the age and mental 

state of the subject. To some degree, these frequency bands are a matter of nomenclature 

(i.e., any rhythmic activity between 8–12 Hz can be described as "alpha"), but these 

designations arose because rhythmic activity within a certain frequency range was noted to 

have a certain distribution over the scalp or a certain biological significance. Most of the 

cerebral signal observed in the scalp EEG falls in the range of 1–20 Hz (activity below or 

above this range is likely to be artifactual, under standard clinical recording techniques). 

Abovementioned ranges are named with letters of the Greek alphabet, and are, as follows: 

1. Delta waves lie within the range of 0.5–4 Hz, and have a very high amplitude (75-200 

µV). These waves are primarily associated with deep sleep. They are present 

frontally in adults, and posteriorly in children. It may occur focally with subcortical 

lesions and in general distribution with diffuse lesions, metabolic encephalopathy 

hydrocephalus or deep midline lesions.  

2. Theta waves lie within the range of 4–7.5 Hz. Theta waves appear as consciousness 

slips towards drowsiness. Theta waves have been associated with access to 

unconscious material, creative inspiration and deep meditation. They can be 

observed over the parietal and temporal lobes in younger children. Larger 

contingents of theta wave activity in the waking adult are abnormal and are caused 

by various pathological problems. It can be seen in generalized distribution in diffuse 

disorder or metabolic encephalopathy or deep midline disorders or some instances of 

hydrocephalus.  

3. Alpha is the frequency range from 8 Hz to 12 Hz. Alpha waves appear in the on both 

sides of theposterior half of the head and are higher in amplitude on dominant side. 
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This rhythm is most prominent in normal subjects who are relaxed and awake with 

eyes closed. It is suppressed by opening the eyes, hearing unfamiliar sounds, by 

anxiety, or mental concentration or attention. An alpha wave has a higher amplitude 

over the occipital areas and has an amplitude of normally less than 50 µV. Alpha can 

be abnormal; for example, an EEG that has diffuse alpha occurring in coma and is 

not responsive to external stimuli is referred to as "alpha coma" [16]. An alpha-like 

variant called mu (μ) can be found over the motor cortex (central scalp) that is 

reduced with movement, or the intention to move.  

4. Beta waves lie within the range of 14-30Hz with an amplitude of under 30 µV. The 

beta rhythm is mainly observed in the frontal and central regions of the scalp. It is 

seen usually on both sides in symmetrical distribution. A beta wave is the usual 

waking rhythm of the brain associated with active thinking, active attention, focus on 

the outside world, or solving concrete problems, and is found in normal adults.  

5. The frequencies in the range of 30-100 Hz (mainly up to 45 Hz) correspond to the 

gamma range (sometimes called the fast beta wave). The amplitude of this rhythm is 

very low. Gamma rhythms are thought to represent binding of different populations 

of neurons together into a network for the purpose of carrying out a certain cognitive 

or motor function. The gamma wave band has been proved to be a good indication of 

event-related synchronization (ERS) of the brain and can be used to demonstrate the 

locus for finger, toe, and tongue movement [17]. Many neuroscientists are not 

convinced of the gamma wave argument - it has been suggested that EEG-measured 

gamma waves could be in many cases an artifact of electromyographic (EMG) activity 

[18].  

76 76.5 77 77.5 78 78.5 79 79.5 80 80.5
-0.2

-0.1

0

0.1

0.2

A
m

pl
itu

de
 (m

V
)

Time (s)

32.5 33 33.5 34 34.5 35 35.5 36 36.5 37

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Am
pl

itu
de

 (m
V)

Time (s)

40.5 41 41.5 42 42.5 43 43.5 44 44.5 45
-0.1

-0.05

0

0.05

0.1

A
m

p
li
tu

d
e
 (

m
V

)

Time (s)

Figure 6. Alpha wave 

Figure 8. Beta wave 

Figure 7. Gamma wave 



  

 7  

In conventional scalp EEG, the recording is obtained by placing electrodes on the scalp 

with a conductive gel or paste, usually after preparing the scalp area by light abrasion to 

reduce impedance. Electrode locations and names are specified by the International 10–20 

system [19] which employs 21 electrodes attached to the surface of the scalp at locations 

defined by certain anatomical reference points; the numbers 10 and 20 are percentages 

signifying relative distances between different electrode locations on the 

skull perimeter. This standardization ensures that the naming of 

electrodes is consistent across laboratories. The spacing of 

electrodes with this system is relatively sparse: the 

interelectrode distance is approximately 4.5 cm on a typical 

adult head. Improved spatial resolution can be acheved by 

using high-density arrays with additional electrodes placed 

in-between the existing 10-20 system. In some applications, 

such as ERP analysis and brain computer interfacing, a 

single channel may be used. In such applications, however, 

the position of the corresponding electrode has to be well 

determined. EEG recording can be bipolar, where each 

channel represents the difference between two adjacent 

electrodes, or unipolar, in which a single reference electrode is used 

for all the channels. That reference can be constructed by summing 

and averaging all of the used channels, or it can be one designated electrode, such as vertex 

(Cz), linked-ears, linked-mastoids, ipsilateral ear, contralateral ear and tip of the nose [20]. A 

modification of the averaged reference electrode called Laplacian montage where each 

channel represents the difference between an electrode and a weighted average of the 

surrounding electrodes. 

EEG signals have amplitudes of the order of microvolts and contain frequency 

components of up to 100 Hz. To retain as much as possible of the information the signals 

have to be amplified before the analog-to-digital conversion (ADC) and filtered, either before 

or after the ADC, to reduce the noise and make the signals suitable for processing and 

visualization. Filtering is usually done with several filters: a highpass filter with a cutoof 

frequency of less than 0.5 Hz is used to remove the very low frequency components (such as 

breathing), a lowpass filter is used to remove the high-frequency noise (usually over 50-

70Hz), and a notch filter with a null frequency of 50 Hz (or 60 Hz) to reject the power supply. 

ADC quantization is usually performed with 16 bit per sample to preserve as much 

information as possible. 

The greatest problems one has to tackle in biomedical signal recording and processing are 

the detection of and removal of artifacts. One useful categorization of artifacts is based on 

their origin, to those of biological or technical origin. Biological artifacts include breathing, 

eye movement and blinks, cardiac activity, and muscle activity. 

As mentioned earlier, breathing artifacts are removed by using a highpass filter with a 

cutoof frequency of <0.5 Hz. 

Eye movement produces electrical activity, called the electrooculogram (EOG), which is 

strong enough to be clearly visible in the EEG. The EOG reflects the potential difference 

between the cornea and the retina which changes during eye movement. When the eyes and 

eyelids are completely still, the corneo-retinal dipole does not affect EEG. However, the eye 



  

 8  

movements occur several times per second. The strength of the interfering EOG signal 

depends primarily on the proximity of the electrode to the eye and the direction in which the 

eye is moving, i.e., whether a horizontal or vertical eye movement takes place. The EOG 

artifact can sometimes be confused with slow EEG activity, e.g., theta and delta activities. 

Another common artifact is caused by eyelid movement ("blinks") which also influences the 

corneal-retinal potential difference. The blinking artifact usually produces a more abruptly 

changing waveform than eye movement, and, accordingly, the blinking artifact contains more 

high-frequency components. It is of note that blinking artifacts in the frontal electrodes is 

substantially larger than that of the background EEG. EOG signal can be recorded with the 

use of electrodes placed near the eye since these signals are correlated with the EOG in the 

EEG and, accordingly, are useful for artifact cancellation purposes. 

Another common artifact is caused by electrical activity of contracting muscles, 

measured on the body surface by the EMG. This type of artifact is primarily encountered 

when the patient is awake and occurs during swallowing, grimacing, frowning, chewing, 

talking, sucking, and hiccupping [13]. Distribution of spectral components of the EMG 

considerably overlaps with beta activity in the 15-30 Hz range. Unfortunately, this 

disadvantage is further aggravated by the fact that it is impossible to acquire a reference 

signal containing only EMG activity which would be useful for artifact cancellation. 

Electrical activity of the heart is another type of biological artifact. ECG amplitude is 

two orders of magnitude lower than spontaneous EEG, and the repetitive, regularly 

occurring waveform pattern which characterizes the normal heartbeats fortunately helps to 

reveal the presence of this artifact. However, the spike-shaped ECG waveforms can 

sometimes be mistaken for epileptiform activity when the ECG is barely visible in the EEG. 

Even bigger problems occur in the presence of cardiac arrhytmias, when they exhibit 

considerable variability in the interbeat interval. 

EOG, ECG and breathing artifacts can be removed by recording the required signal as a 

separate channel and substracting them from the EEG, but this is not the case with muscle 

artifacts where other mothods are required. Studies have shown that independent 

component analysis (ICA) can effectively detect, separate, and remove contamination from a 

wide variety of artifactual sources in EEG records with results comparing favorably with the 

aforementioned methods [21], [22]. 

Artifacts that originate from the equipment, including electrodes, cables and components 

used in the equipment construction are called technical artifacts. Movement by the patient, 

or even just settling of the electrodes, may cause electrode pops, usually manifested as an 

abrupt change in the baseline level, followed by a slow, gradual return to the original 

baseline level. If the electrode wires are not shielded, they are susceptible to electromagnetic 

fields caused by currents flowing in nearby powerlines or through the wires themselves. As a 

result, 50/60 Hz powerline interference is picked up by the electrodes and contaminates the 

EEG signal. A third source of possible interference can be the presence of an IV drip; such 

devices can cause rhythmic, fast, low-voltage bursts, which may be confused for spikes. Other 

technical artifacts are those produced by internal amplifier noise and clipping caused by an 

ADC with a dynamic range which is too narrow for the recorded signal [13]. 

C. Event-related synchronization/desynchronization (ERS/ERD) 

Brain's response to sensory, motor, cognitive or emotional stimuli can manifest itself in 

EEG either as classical, phase-locked event-related potentials (ERP), or non-phase locked 
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changes in the EEG activity [23]. ERPs are clearly visible on the time average of properly 

synchronized EEG responses. On the contrary, non-phase locked activity cannot be extracted 

by a simple linear method, such as averaging, but may be detected by frequency analysis. 

This means that these event-related phenomena represent frequency specific changes of the 

ongoing EEG activity and may consist, of either decreases or of increases of power in given 

frequency bands. This happens due to a decrease or increase in synchrony of the underlying 

neuronal populations, respectively. The former case is called event-related desynchronization 

or ERD [1], and the latter event-related synchronization (ERS) [2]. Classically, induced ERD 

and ERS are quantified by the following procedure: the most reactive frequency bands were 

chosen by a trial-and-error procedure, and then signals, band-pass filtered within those 

bands, were squared before averaging. 

Voluntary movement results in desynchronization in the upper alpha and lower beta 

bands, localized close to sensorimotor areas, starting about 2 s prior to movement onset, and 

is observable in the µ and central β rhythms [24]. ERS is similarly defined as an increase in 

power in a frequency band. The µ ERD is most prominent over the contralateral sensory-

motor (SM) areas during motor preparation and extends bilaterally with the onset of 

movement [25]. The ERD and ERS must be observed in relation to the baseline activity 

measured some seconds before the event. It is now well established that even just the 

imagination of movement produces an event-related desynchronization (ERD) over the 

sensorimotor areas. The main difference between the imagination and execution of 

movement is that in the former case execution would be blocked at some cortico-spinal level.  

III. METHODS 

A. Data Acquisition 

We studied five healthy volunteers (1 female and 4 male), aged 21-27 years (mean 23 

years), all of them right-handed and in different physical shape. 

None of the subjects had any experience with the BCI. The subjects 

were familiarized with the technique required to control the Wii 

console (Wiimote) and the rules of the game that was to be played. 

The chosen game was Wii Bowling, a virtual simulation of a game 

of ten-pin bowling. It is played holding a WiiMote, and swinging as 

a bowling ball. These moves are sudden and involve a lot of 

activity from the whole body, so they were simplified to use a 

computer mouse. The WiiMote was attached to a DC motor whose 

power and direction were controlled using a slider in an existing 

LabView program. Subjecets were required to click on the slider 

and swing it from left to right and back. This caused the Wiimote to rotate and throw the 

ball. 

Each subject took part in two recording 

sessions: 1) self-paced rotation of the wrist 

whilst holding the mouse as if the game were 

being played, with the console itself turned 

off, for a duration of ~2 minutes, and 2) 

playing one ten-frame game of Wii bowling, 

using the same movements as in the first 

Figure 9. Nintendo Wii console 

Figure 10. A screenshot of Wii Bowling 



  

 10  

session. The duration of the recording for the second session was determined by the players’ 

skill (3-5 minutes). Intentionally, the experiments were conducted is a room with heavy 

traffic where other students work on their projects. This environment was selected in order 

to test the system in the conditions similar to those where the system will be utilized. Each 

participant sat comfortably in a chair, hands holding an ordinary computer mouse in front of 

a projection screen with the game on it. They were asked not to make any excessive 

movement not required to play the game. 

The EEG was recorded with an Electro-Cap of an elastic spandex-type fabric with 

recessed, pure tin electrodes attached to the fabric in the standard 10-20 method of electrode 

placement [19]. Bipolar EMG recording was conducted on the right flexor carpi ulnaris 

muscle [26] with the two Ambu Neuroline 720 electrodes. The cap and the EMG electrodes 

were connected to a PsychLab EEG8 amplifier. The amplifier was connected to a NI BNC-

2090 terminal block and further to NI DAQCard-6062E A/D converter in a standard 

notebook computer’s PCMCIA slot. The sampling frequency was set to 1 kHz. One EEG 

channel was used for bipolar recording between the C3 and C4 electrodes, placed above the 

primary motor cortex [27]. Trials were made with a different configuration: unipolar 

recording of the signals on C3 and C4 referenced to the electrode placed on the ear lobe, but 

the results were significantly worse. Electrooculogram was not recorded. LabView vas used 

to store recorded data on a hard disk. 

 
Figure 11. The experimental setup used fot recording; the screen in the back shows a Wii Bowling game, 

the monitor in the front is used for the control of the game 

B. Signal Processing 

Because the signal-to-noise ratio (SNR) of the movement induced EEG to spontaneous 

EEG is very low, the recordings are highly variable even when the same movements are 

repeated. Relevant phenomena for this algorithm are ERD and ERS in the µ band (8-12Hz). 

In order to make ERD noticeable, I filtered the recorded EEG data. All processing was 

performed in MATLAB. I utilised two filter designs: a 10th order filter with a 9-12 Hz 

1. Wii Bowling 

2. Labview slider program 

used to control the rotation of 

the Wiimote 

3. The slider is controlled via 

a computer mouse 
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passband and a slow roll-off, and a 24th order filter with a 8-10 Hz passband and a steep roll-

off. Both filters had a minimal stopband gain of -80 dB. Samples of filtered sequences were 

squared and filtered with a simple moving average filter to compute the short-time power of 

the EEG in the filtered band. 

The detection algorithm used the two thresholds to reach a decision: upper (UT) and lower 

threshold (LT). The first assumption was that during an idle state, without movement, the 

power of the µ band was higher than the UT. Lowering the UT would cause the detections to 

be too narrow, and too high a value would cause a lot of false positives, detections when there 

was no movement, due to the stochastic nature of the EEG signal. This is why we introduced 

LT, with a low enough value to avoid potential false positives. The algorithm claims that the 

movement is occurring when the power drops beneath LT and that the movement stopped 

when the power is higher than LT. We now used UT to improve on our detections. The 

algorithm moved back along the signal, until it found the moment at which the power of the 

signal was higher than UT. This moment was declared as the new start of the movement. 

Same technique was applied to the estimated end of the movement, but in the opposite 

direction along the signal. This enabled us to choose low values of LT and still retain a 

reasonable ability to determine the onset and ending of a movement. After this, we rejected 

all detected movements with a too short duration, and too frequent movements. In all, four 

different real-valued variables were used (LT, UT, shortest detectable movement duration, 

shortest time between two consecutive movements) and one binary variable (filter type). 

EMG sequence processing consisted of baseline removal and rectifying the signal so the 

movements could easily be spotted. The algorithm didn’t use EMG for detection. 

 

Figure 12. A segment of the recorded data on subject IA before processing 
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IV. RESULTS 
Figure 12 shows a recorded segment from one of the subjects before any processing has 

taken place. The plots that the algorithm had produced as its output were analysed and 

certain important features were selected for the quality assessment of the algorithm. Since 

the EMG and EEG recordings were synchronized, and each movement is easily seen in the 

EMG, it was used as a reference for the accuracy of the detections. As ERD/ERS are time-

locked to the event, but aren’t phase-locked, they can be seen on a time-frequency 

representation, such as a spectrogram (Figure 13). Because the ERD is localized to a narrow 

frequency band (µ band), the signal was bandpass filtered to retain only those frequencies 

(Figure 14).  

The same segment from the Figure 12, only after the EMG has been rectified and EEG 

has been filtered and the detection took place, is shown on Figure 15. Green (dotted line) and 

red (solid line) lines are the detected starts and ends of the movements. Horizontal lines on 

the lower subplot are    and   . Values    and   , used for the quality assessment are 

illustrated on the plot:    is the difference between the actual and detected movement 

starting time, and    is the difference between the detected and actual end of movement. 

  
Figure 13. (left): Spectrogram of the whole EEG sequence, and (right): a part of the sequence with ERD 

clearly highlighted 

 
Figure 14. An EEG sequence filtered to retain only the µ-band 

Ellipses on Figure 15 mark the phenomena also used to evaluate the success of the 

algorithm; left image on Figure 15 shows an occurrence of a False Positive (type I error), that 

is a movement was detected which didn’t happen, or at least can’t be seen in the EMG 

(maybe it originated from a different muscle, or it was imagined); the image on the right 

depicts two other events: the solid line marks a False Negative (type II error), meaning that 

the movement which is clearly seen in the EMG wasn’t detected, and the dotted line marks a 

True Positive, where the movement happened, originated from the observed muscle, and was 

successfully detected from the EEG data. 
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Figure 15. (left): Fully processed segment (subject IA), showing the detected word starts (dotted line) 

and ends (solid line); the ellipse marks the False Positive event, the detection of a nonexistent 

movement; VZ and VC are the difference between the detection times and actual movement times; 

(right): Fully processed segment (subject MK) showing the detected word starts and occurrences of 

False Negative (an undetected movement) and True Positive (correctly detected movement) 

The results for each of the subjects for both sessions and a summary are given in  

 

Table 1. The quality of the algorithm is described using several parameters. One is a 

number of correctly detected movements    and a percentage of    in relation to the number 

of actual movements    

   
  
   

 

Other parameters are: a number of false negatives   ,    and   . 

The success of the algorithm depends heavily on the choice of these parameters. To ensure 

that their values are optimal, each sequence has been tested with at least a dozen different 

combinations. To illustrate how crucial these values are, Figure 16 is showing a result of the 

algorithm using a good combination, and Figure 17 is showing an example of bad parameter 

choice. 
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Figure 16. A sequence from the subject ML illustrating a good choice of parameter values 

 

Figure 17. The same sequence as in Figure 16, with a bad choice of parameter values 
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TABLE 1. COMPILED RESULTS FOR THE ERD-BASED MOVEMENT DETECTION METHOD FOR EACH OF THE 

SUBJECTS 

Name Age Gender Session TP FP VZ [s] VC [s] 

IA 27 M 

1 100% (11) 3 0,6±0,8 0,4±1,1 

2 75% (9) 1 1,2±0,8 0,9±1,5 

LJ 22 M 

1 75% (15) 2 0,0±0,7 0,3±0,8 

2 70% (14) 3 1,1±0,8 1,1±1,2 

ML 23 M 

1 94% (16) 6 0,2±1,4 0,9±1,0 

2 74% (17) 5 -0,3±1,8 0,1±0,6 

MŠ 22 M 
1 83% (15) 6 0,0±0,7 0,0±0,9 

2 73% (11) 3 -0,7±2,0 -1,2±2,0 

MK 21 F 

1 71% (12) 0 0,5±1,0 0,4±0,8 

2 81% (17) 4 1,0±1,3 -0,8±1,5 

TOTAL 

1 83% (69) 17 0,2±1,0 0,4±1,0 

2 75% (68) 16 0,4±1,3 0,0±1,6 

Session 1 – without the use of Wii console, Session 2 – With use of Wii console; TP is the ratio of True 

Positives and all movements, and a number of True Positives (in parenthesis); FP is the number of 

missed detections; VZ and VC are the differences between the detected and actual start and end of the 

movement, respectively, here presented as mean + standard deviation 

V. DISCUSSION 

Four out of five subjects had over 75% of true positive detections, which is in accordance 

with the results of other similar experiments [6], [7], [28]. The second session, with the Wii 

console turned on, produced worse results in four subjects, as expected, but performed well 

with over 70% detected movements. The ERD was mostly detected before the onset of 

movement, confirming that it is a result of the planning activity of the brain. It is noticeable 

that the subjects that presented fewer false positives, also presented fewer true positives. 

This can be explained with the different choice of values for    and   , resulting in the 

stricter criteria for the ERD detection, and a certain trade-off is required. Movements were 

easily recognized from the self-paced sessions, but with Wii sessions certain problems 

presented themselves; namely, because of the way the game is controlled, some of the throws 

were unsuccessful, resulting in several consecutive swings in a short time-span, making 

them hard to separate in the EMG. Failed throws resulted in frustration as well, which 

manifested itself as artefacts in the EEG. While playing the game subjects were less 

concentrated on the wrist itself, due to the immersion in the game and the results of each 

throw, making small movements, spotted as low amplitude peaks in the EMG, and also 
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observable in the EEG. One of the subjects reported a higher level of competitive spirit and 

reacted to the results of the throws causing false positive detections to appear between some 

throws [29]. 

It is of importance to mention that EOG wasn’t recorded, because the game itself asks the 

players to follow the ball swiftly along the screen, and to switch their gaze from the screen to 

the controller. Even though the scalp electrodes were placed over the motor cortex, far from 

the eyes themselves, sudden movements could cause significant artefacts in the EEG. 

The cap used for the EEG acquisition had a standard 10-20 system of electrodes. It is 

possible that a different, more dense layout [7], [30] would yield better results due to the 

ability to pinpoint the cortical structures responsible for the examined movement with 

greater accuracy. This would, potentially, improve the SNR of the evoked activity to the 

spontaneous brain activity, consequentially reducing the order of the used filters and 

facilitating signal processing. 
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