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Metode analize signala sa inercijalnih 

senzora za analizu hoda pacijenata sa 

oštećenim obrascem hoda 

Rezime - Analiza hoda je postala široko rasprostranjen klinički alat koji se koristi 

za objektivnu evaluaciju obrasca hoda, efekata hirurških intervencija, oporavka ili 

efekata terapije. Sve veći broj kliničara bira pogodne tretmane za lečenje pacijenata na 

osnovu informacija o kinematici i kinetici hoda. Procena i kvantifikacija parametara 

hoda je važan zahtev u oblasti ortopedije i rehabilitacije, ali takođe i u sportu, rekreaciji 

i posebno u razvoju tehnologija za ljude u procesu starenja.  

U cilju objektivne procene obrasca hoda, razvijen je bežični senzorski sistem 

čije su senzorske jedinice bežične, malih dimenzija i jednostavno se montiraju na 

segmente nogu subjekta čiji se hoda analizira. Senzorske jedinice podržavaju 3D 

inercijalne senzore (senzore ubrzanja i ugaonih brzina, tj. akcelerometre i žiroskope), 

kao i senzore sile. Osnovni cilj istraživanja je doprinos metodologiji za obradu podataka 

sa inercijalnih senzora i razvoj novih metoda obrade signala sa inercijalnih senzora u 

procesu određivanja kinematičkih veličina koje su uobičajene u analizi hoda (uglovi u 

zglobovima, brzina kretanja, dužina koraka). Ova metodologija je od posebne važnosti 

za objektivnu procenu nivoa motornog deficita, progresa bolesti i efikasnosti terapija, 

kao i efikasnosti primenjene motorne kontrole (prilikom funkcionalne električne 

stimulacije).  

U toku istraživanja razvijeno je nekoliko metoda za računanje uglova segmenata 

nogu ili zglobova, u zavisnosti od senzorske konfiguracije i složenosti algoritma. U 

disertaciji su odvojeno prikazani slučajevi u kojima je neophodno posmatrati kretanje u 

prostoru (3D analiza) i mnogo češći slučaj kad se kinematika može redukovati na 

sagitalnu ravan (2D analiza). Algoritmi uključuju i kalibraciju senzora, eliminaciju 
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drifta, rekonstrukciju trajektorije i izračunavanje niza drugih relevantnih podataka koji 

karakterišu obrazac hoda. Dobijeni rezultati su poređeni sa postojećim sistemima za 

analizu hoda koji su validirani za kliničke primene. (sistemi sa kamerama, goniometri, 

enkoderi).  

U toku istraživanja je, prema posebno definisanim modelima koje su odobrili 

etički komiteti medicinskih ustanova, bio snimljen hod većeg broja ispitanika sa raznim 

tipovima motornih deficita. Jedan deo ovih istraživanja je rađen na Klinici za 

neurologiju Kliničkog centra Srbije, a drugi deo u Institutu za rehabilitaciju 

„Dr. Miroslav Zotović“ u Beogradu. Cilj ovih kliničkih studija je bio da se na osnovu 

analize odredi koje specifičnosti moraju da se analiziraju posebnim metodama obrade 

signala, a koje daju značajne elemente za dijagnostiku motornog deficita.  

Poseban fokus teze je klinička primena razvijenih algoritama na analizu hoda 

pacijenata sa Parkinsonovom bolešću koji, osim uobičajene analize parametara hoda, 

omogućavaju prepoznavanje promena parametara hoda u okviru snimljene sekvence 

hoda, prepoznavanje poremećaja nastalih u toku snimljene sekvence hoda (tzv. 

„freezing“ epizode), određivanje njihovog trajanja i klasifikaciju podtipova svake od tih 

epizoda. Rezultat teze takodje obuhvata i opise kliničkog protokola za praćenje efekata 

terapije pacijenata nakon moždanog udara pomoću razvijenog senzorskog sistema. 

Rezultat ovog istraživanja je sistem koji omogućava jednostavno postavljanje i 

korišćenje sistema sa inercijalnim senzorima. Za ovaj sistem razvijen je korisnički 

interfejs koji omogućava obradu snimljenih podataka primenom razvijenih metoda sa 

ciljem generisanja objektivne slike motornog deficita pacijenta koji je od interesa za 

kliničare (prikaz vremensko-prostornih parametara hoda, uglova u zglobovima, 

trajektorije nogu, profila sila), kao i smeštanje dobijenih rezultata u bazu podataka ili 

izvoz u Excel formatu.  

 

Ključne reči: inercijalni senzori, računanje uglova, objektivna evaluacija hoda, 

pacijenti sa oštećenim obrascem hoda, „freezing“ eipizode pacijenata sa Parkinsonovom 

bolešću 

Naučna oblast: tehničke nauke, elektrotehnika 

Uža naučna oblast: biomedicinsko inženjerstvo 

UDK broj: 621.3 
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Inertial Sensors Signal Processing Methods 

for Gait Analysis of Patients with Impaired 

Gait Patterns 

Abstract - Gait analysis has become a widely used clinical tool which provides 

objective evaluation of the gait pattern, the effects of surgical interventions, recovery or 

therapy progress, and more and more clinicians are choosing therapy treatments based 

on gait kinematics and kinetics. Measuring gait parameters is an important requirement 

in the orthopedic and rehabilitation fields, but also in sports and fitness, and 

development of technologies for elderly population.  

In order to provide objective evaluation of the gait pattern, we have developed 

sensor system with light and small wireless sensor units, which can be easily mounted 

on body. These sensor units comprise 3-D inertial sensors (accelerometers and 

gyroscopes) and force sensing resistors, and our recommended setup includes one 

sensor unit per each segment of both legs. The main goal of this research is contribution 

to the methodology for processing of signals from inertial sensors (accelerometer pairs, 

or accelerometer and gyroscope sensor units). By using signal processing algorithms 

developed for this research, inertial sensors allow objective assessment of the quality of 

the gait pattern. This methodology is especially important for assessment of the motor 

deficit, progress of the disease and therapy effectiveness, and effectiveness of 

performed motor control (functional electrical stimulation). 

We have developed several methods for estimation of leg segment angles and 

joint angles, which differ in sensor configuration and algorithm complexity. Methods 

based only on accelerometers offer reliable angle estimations, which are limited to 

sagittal plane analysis, while the method using accelerometers and gyroscopes allows 3-

D analysis. All this algorithms include sensor calibration, drift minimization, trajectory 
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reconstruction and calculation of numerous other parameters relevant to gait pattern 

analysis. The obtained results were compared with other commercial systems which are 

validated for clinical applications (camera systems, goniometers, encoders). 

This research also includes two clinical studies. The study with patients with 

Parkinson’s disease was performed at the Neurology Clinic, Clinical Centre of Serbia, 

in Belgrade. The other study, recording hemiplegic patients during their recovery after 

stroke, was performed at the Rehabilitation clinic “Dr. Miroslav Zotovic” in Belgrade. 

The database recorded in these two clinics comprises more than one hundred patients 

with different types and levels of gait impairments. The goal of these studies was to 

determine which specificities of the gait patterns or gait deformities require special 

signal processing methods, and which characteristics are essential for diagnostic of 

motor deficit.  

A special focus of the thesis is clinical application of the developed gait analysis 

algorithms for patients with PD, which required the development of specific algorithms 

for signal processing that would provide detailed assessment of their gait patterns. For 

this application, besides providing the usual gait parameters we developed the 

algorithms for recognition of the changes and deformities in gait pattern (freezing of 

gait), duration and classification of these episodes. This thesis also includes description 

of the clinical protocol for monitoring the rehabilitation effects for patients after stroke.  

The result of this research is a system that enables simple donning and doffing of 

the hardware, and simple use (both signal recording and processing). For this system, 

graphical user interface has been developed which enables processing of recorded files 

(gait sequences) by implementing the developed methods and plotting the kinematics 

curves, force profiles, spectrum of the movement or spatio-temporal gait parameters. As 

well as saving the obtained results in database or exporting to Excel format.  

 

Key words: inertial sensors, angle estimation, objective evaluation of gait 

pattern, patients with gait impairment, freezing of gait episodes in patients with 

Parkinsonean disease 

Scientific area: technical sciences, electrical engineering 

Specific scientific area: biomedical engineering 

UDK number: 621.3 
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Preface 

This thesis is a part of the BMIT group’s more complex research for 

rehabilitation improvements which comprises 1) development of new sophisticated 

systems based on functional electrical stimulation and soft-robotic gait assistance, and 

2) improvement of methodologies for objective gait assessment which is applicable 

for clinical practice. 

Technical research activities described in this thesis were performed in the 

Laboratory for Biomedical Instrumentation and Technologies, School of Electrical 

Engineering, University of Belgrade. Validations of the developed methods were 

performed in Health Technologies Unit, Tecnalia Research Center, San Sebastian, 

Spain, and in Center for Sensory-Motor Interaction, Aalborg University, Aalborg, 

Denmark. Clinical research activities were performed at the Neurology clinic, Clinical 

Center of Serbia, and Rehabilitation clinic “Dr. Miroslav Zotovic”, Belgrade, Serbia.  

Research presented in this thesis was supported by the Serbian Ministry of 

Education and Science, grant #145041, “Functional electrical therapy for forming 

motor patterns after cerebrovascular insult” (2008-2010), and grant #175016, “The 

effects of assistive systems in neurorehabilitation: recovery of sensory-motor 
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Research and development of the sensor system for gait analysis (SENSY) and 

its application was supported by Tecnalia Serbia, Belgrade, Serbia (which is a node of 

Tecnalia Research Center, San Sebastian, Spain). 
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Objectives of the thesis 
In this thesis, we have developed a wearable ambulatory system based on 

kinematic sensors (MEMS accelerometers and gyroscopes) attached on lower limbs 

which can be used for objective evaluation of the gait kinematics. Gait kinematics is 

recorded with wireless sensor units which are placed on each leg segment of both 

legs. Besides kinematics, this system also supports kinetic analysis for what we use 

specially designed shoe insoles with integrated force sensing resistors. The main 

features of the measurement device are to be light, small, inexpensive and robust, with 

low energy demands, and not to hinder subject’s walk. 

The main goal of this research is development of new signal processing 

methods from data acquired from inertial sensors in order to obtain estimation of 

kinematic quantities typical for gait analysis (segment and joint angles, trajectories). 

The inertial sensors, organized either as combination of accelerometer pairs, or 

combination of accelerometer and gyroscope, can be used in ways that eliminate the 

consequences of numerical integration of digital signals and provide objective 

assessment of the quality of the gait pattern. This methodology is especially important 

for assessment of the motor deficit, progress of the disease, therapy effectiveness, and 

effectiveness of the applied motor control. 

In order to evaluate the quality of our new methods, we had to validate our 

gait analysis in clinical environment by recording gait pattern from subjects with 

different types and levels of deviations from the normal gait or motor deficits. Special 

focus of this thesis is application of the developed methods to pathological gait 

recorded from patients with hemiplegia and patients with Parkinson’s disease. For 

patients with Parkinson’s disease who can exhibit episodic gait disturbances (freezing 

of gait), our goal was to provide reliable algorithm that could detect these 

disturbances, their duration and sub-type. 

Results of this research provide useful gait analysis system that allows simple 

(neither time nor skill demanding) donning and doffing and simple calibration of the 

system. Result of this research includes user interface which allows user to process 

recorded data and get gait parameters which objectively and fully describe subject’s 

gait pattern and potential motor deficit. These outputs are stored in database for 

further post-processing or comparison with follow up results. 
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This research follows modern trends in the development of measurement 

systems for objective evaluation in rehabilitation, control of assistive systems, but 

also in sports and fitness, and development of technologies for elderly population.  

Starting hypotheses of the thesis 
• H1: It is possible to use only accelerometers for reliable and accurate gait 

kinematic analysis, and to obtain drift-free angle estimation of lower limbs. 

• H2: Inertial sensors (accelerometers and gyroscopes) can be used for 3-D gait 

analysis and can provide objective estimation of a subject’s gait pattern. 

• H3: By applying the methods developed in this research, inertial sensors can be 

used to detect and classify gait disturbances of patients with Parkinson’s disease 

• H4: By applying the methods developed in this research, inertial sensors can 

provide objective evaluation of the patient’s condition or change of patient’s gait 

pattern to clinicians, allowing them to monitor the therapy effects during 

rehabilitation process.  

Research contributions  
• Analysis of inertial sensors applicability for gait assessment 

• New methods for angle estimation, differing in their complexity and sensor 

configuration 

• Investigating sensor limitations for angle estimations 

• Description of the clinical protocol for gait pattern analysis of patients with 

Parkinson’s disease 

• New methods for recognition and classification of gait disturbances according to 

familiar sub-types 

• Description of the clinical protocol for usage of the proposed sensor system for 

monitoring therapy effects of patients after stroke 

• Development of a complete gait analysis system which can be used for clinical 

gait analysis and for assessment of various gait disorders 

 

The result of this research is a complete sensor system with custom-made 

hardware which is appropriate for clinical applications and new methods for signal 

processing integrated in user-friendly software. The software comprises new 
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algorithms for angle and trajectory estimations, as well as the algorithm for reliable 

stride segmentation applicable for all levels of gait impairment. Angle estimation 

methods based only on accelerometers offer reliable angle estimations, which are 

limited to sagittal plane analysis, while the method using accelerometers and 

gyroscopes provides 3-D analysis. All these algorithms include sensor calibration, 

drift minimization, trajectory reconstruction and calculation of numerous other 

parameters relevant to gait pattern analysis.  

The thesis is based on the publications listed below. 

A. Journal publications: 

1) Kojović J., Djurić-Jovičić M., Došen S., Popović M.B., Popović D.B., 

“Sensor-driven four-channel stimulation of paretic leg: Functional electrical 

walking therapy”, Journal of Neuroscience Methods, June 2009, Volume 

181(1), pp. 100-105. 

2) Popović M.B, Djurić-Jovičić M., Petrović I., Radovanović S., Kostić V., “A 

simple method to assess freezing of gait in Parkinson's disease patients”, Braz 

J Med Biol Res, September 2010, Volume 43(9), pp. 883-889. 

3) Djurić-Jovičić M., Jovičić N., Popović D.B., “Kinematics of Gait: New 

Method for Angle Estimation Based on Accelerometers”, Sensors, November 

2011, Volume 11(11), pp. 10571-10585. 

4) Djurić-Jovičić M., Jovičić N., Popović D.B., Djordjević A.R., “Nonlinear 

Optimization for Drift Removal in Estimation of Gait Kinematics Based on 

Accelerometers”, Journal of Biomechanics, November 2012, Volume 45(16), 

pp. 2849-2854.  

B. International conference publications: 

1) Djurić-Jovičić M., Jovičić N.S., Milovanovic I., Radovanović S., Kresojevic 

N., Popović M.B, “Classification of Walking Patterns in Parkinson’s Disease 

Patients Based on Inertial Sensor Data”, Proceedings from the 10th 

Symposium on Neural network Applications in Electrical Engineering, Neurel 

2010, September 23-25, Belgrade, Serbia, pp. 3-6,. 

2) Djurić-Jovičić, M., Milovanović I.P., Jovičić, N.S., Popović D.B., 

“Walkaround assisted walking of stroke patients”, Proceedings from the 

Medical Physics and Biomedical Engineering Conference, Sept. 7-12, 2009 

Munich, Germany, pp. 299-301. 
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Thesis outline 
Chapter 1 explains the need for objective gait analysis. It also provides 

information about different gait analysis technologies which are commercially 

available on the market. Among these gait analysis systems, we also present our own 

system, called SENSY, which was developed in parallel with this thesis. SENSY is a 

wireless wearable gait analysis system based on inertial sensors, and all the gait 

recordings acquired during the research for this thesis were performed on SENSY 

hardware.  

Chapter 2 introduces inertial sensors, their applicability, their advantages and 

possibilities for implementation, as well as computational disadvantages. It reviews 

different methodologies for processing of signals obtained by these sensors, with a 

focus on estimation of segment and joint angles.  

Chapters 3 and 4 describe our new methods for estimation of the lower limb 

angles in the sagittal plane, based on accelerometer pairs.  

Chapter 3 describes a new method for estimation of lower limb segment and 

joint angles based on adaptive band pass filtering of the differences of signals from 

parallel axes from two accelerometers mounted on the same sensor unit. This method 

eliminates the need for double integration as well as the drift typical for double 

integration. The other method, described in chapter 4, is computationally more 

complex and uses nonlinear optimization for drift removal. The key feature of the 

proposed method is to model the drift by a slowly varying function of time (a cubic 

spline polynomial) and evaluate the polynomial coefficients by nonlinear numerical 

simplex optimization with the goal to reduce the drift. Besides angle estimation, this 

method also provides trajectory estimation. The method described in chapter 4 can be 

used both for real-time and off-line analysis of gait.  

Chapter 5 describes angle estimation method based on accelerometer and 

gyroscope combination. In order to provide 3-D gait analysis, it uses transformation 

matrices and combines human locomotion and biomechanical constrains to fuse 

accelerometer and gyroscope data, as well as polynomial fitting to eliminate the drift. 

This chapter also describes methods for stride segmentation which will be a base for 

some clinical applications. 
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Chapter 6 shows comparison of the methods described in chapters 3, 4, and 5. 

These methods are tested on a double rigid pendulum, physically analog to a leg 

model, and validated with digital encoders.  

Chapter 7 describes investigated clinical applications of the developed methods, 

and includes two clinical studies. One part of clinical recordings were performed at 

the Neurology clinic, Clinical Centre of Serbia, in Belgrade (recording patients with 

PD) and the other part was performed at the Rehabilitation clinic “Dr. Miroslav 

Zotović” in Belgrade (recording hemiplegic patients during recovery after stroke). We 

investigated clinical application of the developed gait analysis algorithms for patients 

with PD. In addition to typical gait assessment comprising gait assessment through 

usual gait parameters, we have developed algorithms for recognition of the changes 

and deformities in gait pattern (freezing of gait episodes), and classification of these 

episodes. This thesis also includes description of the clinical protocol for monitoring 

the rehabilitation effects for patients after stroke.  

Chapter 8 proposes new gait analysis software with user-friendly interface 

which does not require specially educated (technically) clinical staff. This software 

outputs kinematic and kinetic curves including segment and joint angles, trajectory 

reconstruction and ground reaction forces, performs spectrum analysis and spatio-

temporal gait parameters. Upon signal processing, data can be exported to Excel and 

saved in database.  

Finally, chapter 9 summarizes the contribution of this thesis and outlines some 

perspectives of the proposed methods. 

Gait terminology, definition of gait phases and spatio-temporal gait parameters, 

which are necessity from transferring the outputs of our developed methods to clinical 

practice are described in Appendix. 
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1. Introduction  

The significance of objective gait analysis 
Human gait is one of the most difficult tasks that we learn but, once learned, it 

becomes almost subconscious. Only when walking is disturbed by injury, disease, 

degeneration or fatigue, we realize our limited understanding of this complex 

biomechanical process (Winter, 1984). 

There are three main branches in studying gait analysis: gait kinetics, dynamic 

electromyography (EMG), and gait kinematics. A comprehensive gait analysis usually 

includes all three (Vaughan et al. 1992) but obtaining this complex information is 

time demanding, uncomfortable for subject, and requires dedicated space. Kinematics, 

kinetics and electromyography are fundamental to characterize gait patterns and their 

underlying mechanisms (Frigo et al., 1996; Romanò et al., 1996). However, 

simplified kinematic analysis (e.g., spatio-temporal parameters) can also be clinically 

valuable, and an ambulatory device may be advantageous for these types of 

applications (Aminian et al., 2004b).  

Gait kinetics is defined as the forces, moments, and powers that change over the 

gait cycle. The forces are captured by the use of force plates embedded in a walkway 

or by using force sensing resistors embedded in shoe insoles, while the moments and 

powers are estimated from models of the body by using mechanics.  

Dynamic electromyography refers to the evaluation of muscle activity 

throughout the gait cycle. This is accomplished through the use of either surface or 

needle electrodes. Electromyography (EMG) techniques provide detection and 

monitoring of electrical muscle activity, however, it does not provide a direct measure 

of movement, and a substantial number of electrodes and huge amount of data 
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processing are required for studying complex movements such as gait (Den Otter et 

al., 2006; Frigo et al., 2000).  

Gait kinematics refers to the branch of biomechanics that deals with 

accelerations, velocities and most importantly angles, in particularly joint angular 

changes over the gait cycle. 

Gait analysis has become a widely used clinical tool, and increasing number of 

clinicians is choosing suitable treatments for their patients based on the information 

from kinematic and kinetic data. It also provides an effective tool for evaluating and 

quantifying the effects of surgical interventions. Measuring gait parameters is an 

important requirement in the orthopedic and rehabilitation fields. At the present time, 

gait analysis is primarily carried out in one of two ways (a) in a motion laboratory, 

with full analysis of the motion using highly accurate optical systems, and (b) in a 

doctor’s office with the physician making visual observation.  

A complete gait analysis system in the motion laboratory uses an optical motion 

setup for kinematic data combined with force platforms for assessment of ground 

reaction forces. Such system is expensive, requires a large space, and cannot be used 

outside the laboratory environment. The capture volume is also limited to several gait 

strides. Beside that, camera systems require dedicated working space, and are time 

demanding both for set up and data processing. Consequently, the use of motion 

analysis systems is mainly limited to research studies. A different approach is to use 

low-power portable recording systems carried by the subject for long-term ambulatory 

measurements. Such portable systems are also suitable for capturing gait information 

over larger distances and outside the laboratory environment. During the last two 

decades, with a progress made in micro-electromechanical systems (MEMS), body-

mounted sensors consisting of accelerometers and/or rate gyroscopes have been used 

to obtain kinematic values, such as segments inclination angles, and joint angles 

(Favre et al., 2008; Williamson et al., 2001; Miyazaki, 1997; Sabatini et al., 2005; Tan 

et al., 2008). Force sensing resistors have been used for estimation of ground reaction 

forces (Morin et al., 2002). 

Although many devices exist for kinematic and kinetic assessment, there is a 

need for a low-cost system that could be used in routine practice. Such system should 

be reliable, ambulatory, and easy to use (Sekine et al., 2000; Culhane et al., 2005; 
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Aminian et al., 2004). Being motivated by practical needs we have developed a 

system that fulfils these requirements, which is described in this thesis. 
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Gait analysis systems 
As explained in the previous section, gait analysis is important for objective 

assessment of the effects of the rehabilitation intervention. The most accurate systems 

for gait analysis are camera-based systems with reflective markers (Furnee, 1997). 

Camera systems, together with force platforms, are considered as the gold standards 

among gait analysis systems. 

Optical gait analysis systems (Camera systems) are currently the most well 

known and most precise type of gait analysis systems. Two of the main suppliers to 

gait laboratories are Vicon (www.vicon.com) and Qualisys (www.qualisys.com). 

Although they are the most accurate system on the market, their high price (60-

150.000€), complexity of preparation for recordings and data analysis makes this 

system inadequate for clinical gait assessment (especially daily routine assessment of 

patients with severe gait impairments). The alternatives to camera-based systems are 

ultrasound systems (Kiss et al., 2004) and magnetic tracking systems (Kobayashi et 

al., 1997) which allow a complete 3-D kinematic analysis of human movements. 

Force plates measure the ground reaction forces generated by a body standing 

on or moving across them, to quantify balance, gait and other parameters of 

biomechanics. For studies of movements, such as gait analysis, force platforms with 

at least three pedestals and usually four are used to permit forces that migrate across 

the plate. Gait laboratories typically record from only one or two steps in the middle 

of the gait sequence. The platforms are 60 x 60 cm, so that aiming the platforms 

hinders subject’s natural gait pattern. Major manufacturers are Advanced Mechanical 

Technology, Inc. (AMTI), http://www.forceandmotion.com, Bertec, 

http://www.bertec.com, and Kistler International, http://www.kistler.com/us_en-

us/KistlerCountryHome_KIC. 

Over the last decade, many systems using non-traditional methods for gait 

analysis have been developed. These systems, for example, use laser technology or 

measure near-body air flow (Bonomi et al., 2010; Palleja et al., 2009) in order to 

estimate kinematics and spatial gait parameters. Also, electronic carpet or wearable 

force sensors are used for estimation of ground reaction forces, centre of pressure, and 

temporal gait parameters (Yun, 2011; Liu et al., 2010). Since there is often a need for 
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gait recording in various environments, portable body-mounted systems are preferred 

(Allet et al., 2010; Zheng et al., 2005).  

The portable body-mounted systems allow data acquisition from many steps. 

The portable systems for kinematics data acquisition directly measure joint angles, or 

they can record accelerations or angular velocities of the body segments that carry the 

sensors. Measurement of joint angles can be done with various electrogoniometers 

(Zheng et al.,2005; Legnani et al., 2000; Shiratsu and Coury, 2003). Particularly 

convenient are flexible goniometers, which measure the relative angle between two 

small blocks that are fixed to the body segments (e.g., Biometrics flexible Penny & 

Giles sensors). The advantages of flexible goniometers are: their output is directly 

proportional to the angle and their mounting is simpler compared to some other 

measurement systems. However, they are not sufficiently robust for daily clinical 

usage.  

An alternative to goniometers, offered by the progress made in micro-

electromechanical systems (MEMS), is the use of inertial measurement units (IMUs) 

comprised of accelerometers and gyroscopes, and sometimes magnetometers. The 

advantages of these sensors include their small size and robustness when compared 

with goniometers. However, the disadvantages of the accelerometers (and 

gyroscopes) are computational problems for determining the angles (Mayagotia et al., 

2002; Aminian et al., 2002; Dejnabadi et al., 2005; Luczak et al., 2006). 

Most frequently used gait analysis technologies and main manufacturers for 

each type of system are shown in Fig. 1.1.  
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Figure 1.1. – Commercial technologies for gait analysis. Upper panel: gait analysis systems based on 

inertial sensors, lower panel: other gait analysis systems sorted according to requirements for recording 

space.  

Inertial sensors 

 Researchers use IMU (Inertial Measurement Unit) sensor modules to analyze 

body movement in a range of different medical applications. Inertial sensors combine 

accelerometers, rate gyroscopes and sometimes earth’s magnetic field sensors and 

allow detection of any angular displacement within biomechanical bodies. 

Commercially available systems based on this technology have been used for a range 

of research projects into biomechanics, in which the user generally makes his/her own 

analysis of the data. Researchers can use these to develop their own algorithms, while 

for clinical applications, clinicians can use the company’s software solutions for 

specific measurements. 

XSens’s wireless 3-D motion tracker, MTw (www.xsens.com) is shown in 

Fig. 1.2. It provides drift-free 3-D orientation, acceleration, angular velocity, earth-

magnetic field as well as static pressure that provides evaluation of height.  
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Figure 1.2. – Inertial measurement units from Xsens (MTw) 

Another commercial representative of the same technology is FAB System 

(Functional Assessment of Biomechanics, http://www.biosynsystems.net/f-a-b-

system) developed by BIOSYN SYSTEMS INC. CA (Noraxon), shown in Fig. 1.3. 

Their software displays and calculates kinematic and kinetic data in real time and 

animates body motion with selectable graphical models. The small receiver box can 

also be used as a belt data logger. An onboard control panel allows setup of the 

system in the field and without PC and storage to SD card. The motion capture data 

are processed automatically and the system provides: angle data, force data, torque 

data, velocity, acceleration, power, pressure on the feet and weight.  

  

Figure 1.3. – FAB system: mounted on a subject (left), sensor units (middle), sensor insoles (right) 

KinetiSense (from CleveMed, Cleveland Medical Devices Inc., 

http://www.clevemed.com.) is a compact wireless device that integrates inertial 

motion sensing and electromyography for a wide variety of motion analysis research 

applications (Fig. 1.4.). KinetiSense units comprise 3-D accelerometers and rate 

gyroscopes, and support EMG recording of two channels per sensor unit. The 

KinetiSense system is not intended to measure absolute motion and the software does 
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not calculate joint angle. The software provides linear acceleration along and angular 

velocity about each axis.  

 

Figure 1.4. – KinetiSense sensors from CleveMed. Sensor units record kinematics and 

electromyography.  

Other gait analysis technologies 

Other existing solutions that are based on different technologies (Fig. 1.1, within 

dashed line) are also mentioned in this section. They provide complete gait analysis 

(camera based motion capture system with force plates, electromagnetic systems, 

ultrasound systems) or are specialized in either kinetics or kinematics, or just parts of 

them (GaitRite, stride analyzer, electrogoniometers etc.). In general, these partial gait 

analysis systems are less expensive than commercially available IMUs and very 

simple to use, hence, many clinics or rehabilitation centers will rather purchase some 

of those systems.  

Shoe Insole Sensor Systems - The Stride Analyzer (B&L Engineering, 

www.bleng.com) is a system designed to record foot-floor contact data from 

footswitches and calculates all the gait parameters obtainable from this data. Patient 

tests may be performed in any convenient walking area. This system doesn’t provide 

any information about movement of the leg segments (angles, trajectory etc.).  

(Electro)Goniometers – widely used (in clinics) for measuring joint angles. 

They are lightweight, portable, relatively easily applied, do not restrict movements 

nor interfere in patient activities and adapt well to different body segments. However, 

they are fragile and require calibration and often suffer form crosstalk between the 

axes. Most frequently used goniometers are strain gauge goniometers (or flexible 

goniometers) from Biometrics (http://www.biometricsltd.com/gonio.htm). 
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Optoelectronic (goniometers) systems offer good precision, but their calibration 

procedures and data analysis are time-consuming. 

Ultrasound system: 3-D gait analysis with the measuring system CMS-HS 

(ZEBRIS company, www.zebris.de). The measuring process is based on the technical 

ultrasound pulse time measurement. In this method small ultrasound markers as well 

as triple markers are attached to the sacrum, thigh, ankle and 1st metatarsals, on both 

sides of the body. System outputs the joint rotations in all three planes for the hip, 

knee and ankle joint. The individual gait phases, step length, cadence and average 

speed are also evaluated. The EMG and force data as well as the joint rotation angles 

are shown as normalized and averaged curves with standard deviation. Measuring can 

be done on a treadmill or a feeding unit can be used in order to extend the walking 

range on the floor to up to 4 meters.  

Electronic Walkways - flexible and portable walkways with embedded pressure 

sensitive sensors. One of the most frequently used electronic walkways is GaitRite 

(www.gaitrite.com). The advantage of a walkway is evident when transferring 

objective measures of gait to clinical practice since, for example, neurologically 

impaired patients tolerate poorly lengthy preparations and many attached cords for 

recording purposes. The pressure sensor system records the location of the foot 

activated sensors and the time of their activation or deactivation. It provides the 

spatial and temporal variables of gait along with a dynamic pressure mapping of each 

footprint during walking.  
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Our hardware: custom made wireless sensor system 
Hardware system for acquisition of sensor signals was developed in parallel 

with development of methods for gait analysis. We started with our first prototype, 

named BUDA, 24-channels sensor system which supported force sensing resistors 

and accelerometers, connected by wires to the acquisition device which sent data to 

remote PC by using Bluetooth communication. Although it worked very well, and we 

conducted many experiments with it, we discovered that clinical applications need 

faster setup of the system, and more comfortable feeling for the one who wears it. 

Therefore, switching to completely wireless sensor units was the next logical step. 

Creating the next prototype opened the door for many new studies, and with the 

further development of the MEMS-made gyroscopes and their decreasing price, we 

created the system it is today: 72-channel sensor system that supports force sensing 

resistors, 3-D accelerometers, gyroscopes, magnetometers or any other voltage 

controlled sensor.  

The current version (called SENSY) is simple for mounting on a subject, 

comfortable for subjects, simple for installing and recording, and presents reliable 

system which provides high quality sensor data.  

SENSY hardware comprises 6 peripheral inertial measurement units (IMUs), 

one per each leg segment of both legs, and central PC communication unit (connected 

to USB port of remote computer where signals are monitored and stored) (Fig. 1.5.) 

Foot IMUs are designed with connectors for force sensors which can be attached 

either incorporated in shoe insoles or as independent force sensors. IMUs comprise 3-

D analog accelerometer, and 3-D analog gyro sensor. The IMUs are powered by 

rechargeable batteries. The system is also equipped with its appropriate battery 

charger for IMUs (each unit has an external charger port).  
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Figure 1.5 – Architecture of the SENSY system 

Peripheral nodes acquire signals from accelerometers, gyroscopes and FSRs, 

and send data using wireless link to the central node. The central node acts as a master 

in the network. It synchronizes data from different nodes and implements a 

scheduling algorithm assuring low packet data losses and high throughput. Every 

node can “hear” all other nodes enabling simple redirection techniques - if one sensor 

node looses link with the central node, it can send its data over any other node which 

is visible by both that node and the central node. That node is called redirection node. 

The criterion for choosing redirection node is based on the equalization of delays 

from all nodes – redirection node should be the one that has the shortest delay of its 

data, as explained in (Jovicic et al., 2012). Central node is connected with computer 

using USB connection. The technical data are summarized in Table 1.1.  

Table 1.1. Specifications of the system 
Sampling rate Fixed 100 Hz 
Communication 
(IMUs–central node)  Proprietary based on IEEE802.15.4 standard 

Battery Li-Ion, continuous work for up to 1h, standby up to 5h 
Accelerometers 3-D analogue ADXL330, Analog Devices 
Gyroscopes 3-D analogue LPR530, LPY530, Analog Devices 
Max bit rate 250 kb/s (defined by IEEE5802.15.4 standard) 
Range 30 m 
Transmission power Class 1 (100 mW) 
Datastreams Synchronized 

Packet loss Proprietary mechanism for reduction of packet loss based 
on the use of internal buffering and retransmission protocol 
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This system was tested in different environments and for various clinical 

applications, and proved to have excellent performances in all investigated cases. This 

hardware is easy to mount, light, and does not hinder subject’s movements. The 

system is portable and convenient for storing, as shown in Fig. 1.6.  

 

Figure 1.6. – SENSY system; (a) sensor unit, (b) sensors mounted on a subject, (c) complete equipment 

for gait analysis in light, compact and portable package. 



 

 19

2. Processing data from inertial sensors 

As explained in the previous chapter, for many clinical applications there is a 

need for objective evaluation of gait parameters instead of conventional observational 

gait analysis. Using wearable sensor systems has numerous advantages over 

specialized gait laboratories (with camera based motion capture systems recording 

kinematics and force plates recording kinetics). Inertial sensors can be used in any 

environment, number of strides is not limited, setup is less time demanding and they 

are significantly cheaper. However, when it comes to accuracy, camera-based optical 

systems represent the golden standard offering 0.5 degrees and 3 mm accuracy. 

Inertial sensors and inertial measurement units 

The term IMU (Inertial Measurement Unit) is widely used to refer to a chip 

containing three-axial accelerometers and three-axial gyroscopes and optionally three-

axial magnetometers, with axes placed in orthogonal pattern.  

Accelerometers detect total acceleration in respect to the fixed coordinate 

system which is a sum of Earth’s gravitational acceleration and acceleration of the 

body the sensor is attached to (inertial acceleration). Detected accelerations are given 

through three components of the local coordinate system of IMU. 

Gyroscopes work based on Coriolis force, and they detect rotational movements 

i.e., change of sensor orientation, also given through their three components called 

yaw, roll, and pitch. (These components represent rotation around axes of the local 

coordinate system.) Angular velocity measured by gyroscope is the same from both 

coordinates systems, global (room) and local (IMU) (Goldstein et al., 2000; Brizard, 

2004). 



 

 20

Recently, more and more manufacturers also include three-axial magnetometers 

in IMUs. This allows better performance for dynamic orientation calculation in 

attitude and heading reference systems which base on IMUs. However, 

magnetometers are not included in this study.  

Inertial sensors suffer from offset which is present in the recorded signal, and by 

performing numerical integration (or other operations) on this signal, the results 

exhibit drift and they diverge in time. There are many contributors to the offset in 

inertial sensors - the sensor itself, the readout electronics, mechanical damping, and 

all electrical resistances. This is their main, if not the only, disadvantage and 

numerous researchers in science and industry struggle to find the optimal way to 

minimize or cancel it.  

IMUs for body motion sensing 

Accelerometers are used for long-term monitoring of human movements, for 

assessment of energy expenditure, physical activity, postural sway, fall detection, 

postural orientation, activity classification and estimation of temporal gait parameters 

(Yang et al., 2010; Mizuike et al., 2009; Eng et al., 1995, Takeda et al., 2009; Yang et 

al., 2011). However, only few papers report using only accelerometers for angle 

estimation, or position and orientation estimation due to their tendency to drift after 

integration. 

Therefore, most methods include additional types of sensors (gyroscopes, 

magnetometers, etc.) (Favre et al., 2008; O’Donovan et al., 2007; Williamson and 

Andrews, 2001; Ferrari et al., 2010). Combination of accelerometers and gyroscopes 

is the most frequent approach for angle and trajectory estimation. Based on different 

sensor configuration, it is possible to perform two-dimensional (2-D) or three-

dimensional (3-D) gait analysis. Since the majority of movements are performed in 

sagittal plane, 2-D analysis describing segment inclinations or joint angle 

flexions/extensions in sagittal plane can be considered satisfactory. However, some 

pathologies and gait deformities exhibit movements outside of this plane, and they 

require 3-D movement analysis in order to quantify the performed movement.  

For obtaining full 3-D analysis, three-axial accelerometers and gyroscopes are 

not enough. Namely, we miss information about azimuth for each leg segment, but 

also for coordination among leg segments (the azimuth is not the same for each leg 

segment, it can change in time, and we need to have information about their 
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coordination). These problems can not be solved without magnetometers. However, 

implementing magnetometers and using their output for information about azimuth or 

correcting angles calculated from gyroscope is not completely reliable since they are 

prone to signal disturbances coming from the presence of ferromagnetic materials in 

the near by environment. Since our systems are designed to be used in any 

environment (clinical settings, at home, outdoors etc.), we chose not to use 

magnetometers until we develop reliable algorithm to detect signal distractions and 

neglect corrupted information.  

Angle estimation methods for lower limb kinematics  

When we consider gait measurements using IMUs, we can identify two 

Cartesian coordinate systems. The first system is stationary (fixed) system of the 

room. This is a global system. The second system is local. It is attached to a body 

sensor, so that it is movable, (and each leg segment has it own local system). 

General problem is to determine the relative position between these two 

coordinate systems, more specific, to determine position vector between centers of 

two systems, angles between local and global systems (segment angles), and angles 

between two local systems (joint angles). 

Since we don’t have to analyze the position vector for angle estimation, it is safe 

to assume that the centers of both coordinate systems (local and global) coincide (i.e. 

we translate the centers).  

One of the ways to define relationships between two systems is to use Euler 

angles. However, Euler angles can be problematic since there are cases there they are 

singular. The alternative to Euler angles is to use rotation matrices or quaternions. We 

use here the rotation matrices because they are most efficient for handling vector 

rotations and, hence, most appropriate for our algorithms. The application of 

transformation matrices will be explained in details in chapter 5. 

Typical requirement for the gait analysis system is to be able to provide angles 

between axes of two segments (joint angles) or between axes of the segment and fixed 

axis (segment angles). 

For clinical applications, the most frequent approach is to estimate the range of 

motion of the hip, knee and ankle in the sagittal plane by measurement of the flexion 

and extension at the joint angles However, both segment and joint angles can be 
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defined in all three body planes (sagittal, coronal, and transverse), as shown in 

Fig. 2.1. 

 

Figure 2.1 – Body planes: sagittal, coronal, and transverse. 

The most common definition of 3-D angles applied in medicine and biomedical 

engineering refers to 3-D angles of the joints defined by Grood and Suntay (1983). 

This definition applies only to joint angles and it assigns center of the joint to be the 

center of the coordinate system. However, there are also other definitions, such as the 

definition for the Helen Hayes model where segment angles are defined with respect 

to global coordinate system (by projecting the segments onto three orthogonal planes), 

and joint angles are defined based on the estimated segment angles (Woltring et al., 

1991). Later approach was applied in all our angle estimation methods. 

Since the majority of gait movements is performed in the sagittal plane, gait is 

often evaluated by observing angles in this plane, while only few gait deformities 

require gait assessment in all three planes. 

Schematic of the system configuration with axes orientation for both coordinate 

systems is illustrated in Fig 2.2. The figure also shows definition of segment and joint 

angles in the sagittal plane. 
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Figure 2.2 – Schematic of the system configuration with the coordinate systems. 

There are several ways to estimate segment or joint angles from inertial sensors. 

One method to calculate the angle is to double integrate the measured angular 

acceleration. However, the double integration leads to a pronounced drift (Aminian et 

al., 2002; Dejnabadi et al., 2005). Several techniques have been presented in literature 

for minimization of the drift. For example, Morris (1973) identified the beginning and 

the end of each walking cycle and made the signals at the beginning and the end of 

the cycle equal. Tong and Granat (1999) applied a low cut high pass filter on the 

shank and thigh inclination angle signals. However, these methods also removed the 

static and low-frequency information about the angles and they cannot be applied to 

real-time processing.  

The other method for estimation of angles from the measured accelerations is to 

use accelerometers as inclinometers. In this way, the segment angles are defined as 

the inclination angles between the segments (sensor) and the vertical, and joint angles 

by the subtraction of the angles for neighboring body segments. The results are 

acceptable only if the segment accelerations are small compared to the gravity 

(Dejnabadi et al., 2006). For lower limb kinematics, this condition if fulfilled only in 

some periods of gait cycle. 
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Adding Kalman filtering to integration procedure can decrease the drift and 

provides real-time application, but it requires calibration and data from other sensors 

(accelerometers, gyroscopes, and magnetic sensors in most cases) for error 

minimization, as well as noise statistics and good probabilistic models (Luinge and 

Veltink, 2004; 2005; Cooper et al., 2010). These algorithms can be applied in real-

time and seem to give excellent accuracy for motions which exhibit lower 

accelerations than the leg segments, and which are not exposed to impacts like those 

at heel contacts. For the lower extremities, the performance of the Kalman filter is 

considerably reduced when measuring the orientation angles of segments that move 

fast (Dejnabadi et al., 2006). Inertial sensors that consist of accelerometers, 

gyroscopes, and magnetometers, along with Kalman filtering, allow a good accuracy 

for estimation of lower limb angles (Willemsen et al., 1990). However, good accuracy 

of angle estimation can also be achieved using fewer sensors and much simpler 

algorithms that are not sensitive to the presence of metals and ferromagnetic materials 

such as those that comprise magnetometers (O’Donovan et al., 2007).  

Willemsen et al. (1990) developed a technique to estimate joint angles without 

integration. This method considers 2-D motion of two neighboring leg segments 

(which have a hinge joint) and implements a pair of accelerometers on each segment. 

Based on the signals obtained from a pair of accelerometers on one segment, the 

acceleration of the joint is obtained in the form of a linear combination of the 

measured accelerations. This computation is repeated for the other pair of 

accelerometers located on the neighboring leg segment. By equating the two results 

for the joint acceleration, the angle between the limb segments is identified. The 

method requires adequate low-pass filtering, which introduces a delay and to a certain 

extent hinders the real-time applicability. Further, the accelerometer pairs need to be 

precisely oriented, so that their axes intersect at the joint, which is very difficult to 

achieve considering that the human joints are polycentric. Also, the distances between 

sensors and the joints are required for computation. (Dong et al.,2007). 

Using accelerometer pairs mounted in suggested configuration in sensor unit, 

we get reliable 2-D analysis. By replacing one accelerometer sensor with a gyroscope, 

we can estimate movements in 3-D. Gyroscopes are also prone to drift, but less than 

accelerometers, and in order to get movement displacement it takes one integration 

less from angular velocities than it takes from angular accelerations.  
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Trajectory estimation for lower limb kinematics  

To obtain the trajectory, we have to double integrate the corresponding 

accelerations measured by our sensors. Since accelerometers measure the 

accelerations in local coordinate system related to sensor i.e., leg segment, we first 

have to project accelerations to the axes of global coordinate system. For this we need 

angles between coordinate systems. After obtaining accelerations in global (fixed) 

coordinate system, by integrating them we get velocities and coordinates in the room 

and we can track movement trajectory in the room.  

As explained in previous chapters, performing numerical integration on acquired 

accelerations is susceptible to drift. One approach is to use Kalman filter to eliminate 

the drift (Luinge and Veltink, 2004). We used nonlinear optimization which is 

explained in chapter 4 which is based on drift removal by polynomials.  
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2-D Gait Analysis: Processing 

Accelerometer Pairs 

For this kind of sensor settings, we have developed two algorithms for angle 

estimation in sagittal plane. The first one is extremely simple to implement, but is 

limited to cyclic gait pattern, and gait velocities in the range of [0.2, 1.6] m/s. The 

second is computationally more complex, but has no limitation to movement velocity, 

and can be implemented for non-cyclic leg movements.  
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3. “Smart” filtering algorithm for 2-D 

angle estimation based on 

accelerometers∗ 

Introduction  
We have developed an accurate, yet simple method and instrumentation for 

estimation of absolute segment and joint angles during the gait (assuming kinematics 

in the sagittal plane) which minimizes the effects of drift. The proposed system is 

based only on accelerometer sensors, which is advantageous because their calibration 

is static and less complex than the dynamic calibration required for gyroscopes. 

Additional motivation for this research was the “bad reputation” of accelerometers 

due to the pronounced drift. We wanted to investigate if it is possible to use only 

accelerometers for angle estimations and evaluate the precision of the results.  

Experimental Section  

Sensor system 

The acquisition system that we developed for gait analysis is designed as 

distributed wireless sensor network. A set of battery powered sensor nodes is placed 

on subject, one sensor node for each leg segment of both legs. Sensor nodes establish 

                                                 
∗ This chapter is based on: Djurić-Jovičić M., Jovičić N., Popović D.B., “Kinematics of Gait: New 

Method for Angle Estimation Based on Accelerometers”, Sensors, Nov. 2011, Volume 11(11), pp. 

10571-10585. 
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communication with the coordinator node through low power 2.4 GHz wireless 

communication link. The coordinator node is connected using USB interface to the 

computer. Wireless communication is bidirectional with coordinator node acting as a 

master, and sensor nodes as slaves. The coordinator node manages network traffic and 

USB connection with computer. Data streams from sensor nodes are synchronized 

and system operates with 100Hz sampling rate. 

Sensor node is realized as a sandwich structure of processor and sensor board 

with Li-Ion battery placed between the boards. The compact size design of sensor 

nodes, with dimensions 70x25x15 mm and 27 grams weight, enables comfortable 

wearing and does not hinder subject’s movements. Hardware design is based on 

Texas Instrument’s microcontroller CC2430, which integrates RF front end and 8051 

core in the same case. Standard microcontroller peripherals enable interfacing to 

analog and digital sensors, and different sensor boards can be combined with the same 

processor board.  

In configuration used in this research, sensor board comprises two high 

performance 12-bit digital accelerometers LIS3LV02 (SGS-Thomson 

Microelectronics, USA). Range of sensors is either ±2g or ±6g, which can be selected 

in the acquisition software. Accelerometers are aligned to y axes with distance of 

55 mm between centers. This configuration requires the clinician only to fix the 

sensor array along the body segment, approximately at the mid section of lateral side 

of leg (Fig. 3.1). 
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Figure 3.1. Setup of the sensor system. a) photo of the sensors mounted on the body during the gait 

analysis, b) schematic of the system configuration with the coordinate systems. 
  

Goniometers were attached to the leg segments by using double sided adhesive 

tape and secured with elastic bands with Velcro endings, mounted over the sensors 

and around the leg segment. Sensor nodes were placed in custom made tight sensor 

node-size elastic pockets placed on elastic bands with Velcro at their ends.  

The custom-designed software, created in CVI (LabWindows, National 

Instruments, USA), is used for online monitoring and storing of the acquired data. 

Algorithm 

The mechanics of importance for the analysis considers two sensors (denoted by 

S1 and S2), which are mounted on a rigid rod (Fig. 3.2). The distance between the 

sensors is l. The rod is freely moving with respect to the fixed global coordinate 

system (O'x'y'z'), shown in Fig. 3.1b and Fig. 3.2. The axis x' of the global coordinate 

system is walking direction, and the axis y' is vertical. The center of the rod (O) is 

determined by the position vector )(' 0 tOO r= . 

To analyze the movement in the sagittal plane, we consider the case when the 

rod moves in the O'x'y' plane (2-D model). We define the vector l, which connects the 
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centroids of the two sensors. The positions of the accelerometers are 2/01 lrr −=  and 

2/02 lrr += , respectively. 

O'

r0y'
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y

x
z

S2

S1

l

 

Figure 3.2. Rod with two accelerometers and the coordinate system for analysis of movement in the 

sagittal plane. 

Each accelerometer measures the two Cartesian components of the acceleration 

vector, with respect to the local coordinate system Oxy attached to the rod. The 

equivalent accelerations measured by the two sensors are  

glrgra −−=−=
2d

d
..

0
..

2
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1 t
 (1) 

and 

glrgra −+=−=
2d

d
..

0
..

2
2

2

2 t
.  (2),

where g is the gravity acceleration. 

The difference of the signals from these two sensors is proportional to the 

amplitude of the vector 
..

21 laa −=− . In this way, we cancel out the influence of the 

movement of the rod centroid and of the gravity, and retain information only about 

the changes of the vector l. The second derivative of the vector l is  

yx llll iilul 2
0

2
0 ω−α=φ−φ= &&&&& ,  (3) 

where φ is the angle between the axes x and x', ω and α are the absolute angular 

velocity and angular acceleration of the rod, respectively, xi , yi , and zi  are the unit 
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vectors of the x, y, and z axes of the rod, respectively, l=l , yl ill == /0 , and 

00 liu ×= z  (where zi  is the unit vector of the axis of rotation). 

The difference of the outputs from the accelerometers in the direction along the 

rod axis ( yaΔ ) is proportional to the square of the angular velocity, and the difference 

between the outputs from the accelerometers in the perpendicular direction ( xaΔ ) is 

proportional to the angular acceleration of the segment. The proportionality 

coefficient is equal to the distance between the centers of the accelerometers. In this 

way we eliminated the gravity component from the signal, and eliminated the need for 

precise positioning of the rod on the body segment and calibration of the system.  

As explained in the introduction, one of the main problems with accelerometers 

is significant drift after integration, whether the integration is performed numerically 

or by means of analog integrators. A characteristic example of the drift, which 

resulted even with carefully calibrated accelerometers, is presented in Fig. 3.3. 

 

Figure  3.3. Joint angle (bottom panel) and angular velocity (middle panel) obtained by numerical 

integration of the measured acceleration of the segment (top panel). Dashed line envelope on the 

bottom panel is fitted through the points where the knee should be fully extended with zero degree joint 

angle. However, due to the integration drift, instead of remaining approximately constant, this line has 

a parabolic shape. 

We introduce a method for estimation of the joint angles based on digital 

filtering. In order to explain the method, we use the frequency domain. According to 

the Laplace transform, the integration in the time domain corresponds to 

multiplication by s/1  in the frequency domain, and the double integration 

corresponds to multiplication by 2/1 s , where s is the complex frequency. On the 

frequency axis (i.e., in the Fourier-transform domain, where ω= js ), this corresponds 
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to multiplication by 22 /1)j/(1 ω−=ω .Hence, we use a second-order low-pass filter, 

which mimics this multiplication. Further in the chapter, we shall write 2/1 ω−  instead 

of 2/1 s , because we wish to emphasize the fact that this multiplicative term is purely 

real (although negative). 

Without the loss of generality, we can assume that the signal ltax /)(Δ  is nearly 

periodic. Hence, it has pronounced spectral components at ,...2,1,/ == iTifi , where 

T is the stride period. All relevant spectral components of ltax /)(Δ  should be in the 

roll-off region of the filter, where its transfer function is proportional to 2/1 ω− . For 

example, the transfer function of the second-order Butterworth filter is  
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where 00 2 fπ=ω  is the cutoff angular frequency. On the imaginary axis, when 

0|| ω>>s , we get  
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In order to approximate the double integration, we pass the signal through the 

filter and divide the output by 2
0ω .  

The filter is, however, dispersive. Various spectral components have various 

delays and the filtered signal will only barely resemble the actual function )(tφ . A 

zero-delay filter can be obtained by bi-directional filtering, using the function filtfilt 

in Matlab. First, the signal is filtered in the forward direction. Then, the filtered 

sequence is reversed and run back through the filter. This procedure results in a real 

and positive transfer function (zero-phase distortion and zero group delay), whose 

order corresponds to double the filter order. For example, if we use the first-order 

Butterworth filter, whose transfer function is )1//(1)( 01 +ω= ssB , the result of the 

bidirectional filtering is the transfer function 22
0

2
0 /)1)//((1 ωω≈+ωω  when 

0ω>>ω . Hence, to obtain the 2/1 ω−  transfer function, we use the first-order 

Butterworth filter with filtfilt function and divide the result by 2
0ω− . Fig. 3.4 shows 



 

 33

the normalized spectrum of the angular acceleration, along with the 22
0 / sω  function, 

and the magnitude of the transfer characteristic of the low-pas filter (Bode plot), low-

pass filter combined with a high-pass filter obtained by the filtfilt function. 

 

Figure 3.4. Normalized spectrum of the angular acceleration for knee angle (shown in Figure 3.3) and 

magnitudes of the function 
22

0 / sω , transfer function of a second-order Butterworth low-pass filter 

(lpf), and function of this low-pass filter combined with a high-pass filter (lpf+hpf). 

The choice of 0f  followed the heuristics (Fig. 3.5). If 0f  is too low, joint angles 

exhibit drifting similar to the numerical integration. On the other hand, in order to 

keep the spectral components in the roll-off region of the filter, the condition 

Tff gc /10 =<  should be fulfilled. If this condition is not respected and 0f  is taken to 

be higher than gcf (where gcf  is the gait cycle frequency), one or more spectral 

components are within the pass band of the filter, where the transfer function of the 

filter is approximately constant and close to 1. Increasing further the filter bandwidth, 

i.e., increasing 0f , these components are not affected by the filter. However, their 

magnitudes are divided by 2
0ω , so that the level of these components is reduced, and 

the result is distorted. On the contrary, the magnitudes of the spectral components that 

are in the roll-off region of the filter are insensitive to the modifications of 0f . Since 

filtering should replace the integration, all relevant spectral components of the gait 

should be in the roll-off region of the filter, i.e., well above the cutoff frequency of the 

filter. By comparing the filter amplitude characteristic, which is the modulus of (4), 

and 22
0 ωω , it can be verified that the error between these two functions is less than 
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1 dB for spectral components that are above two times the cutoff frequency of the 

filter. Similarly, the error is less than 0.5 dB for spectral components above three 

times the cutoff frequency. Hence, the cutoff frequency 0f  of the filters is determined 

so that the lowest relevant spectral component of the signal is positioned between 02 f  

and 03 f . 

 

Figure 3.5. Influence of 0f  on angle estimation: filtering for several cutoff frequencies compared with 

angle acquired from goniometers. 

The drift can be additionally reduced if a high-pass filter is used in conjunction 

with the low-pass filter. The cutoff angular frequency of the high-pass filter should be 

below 0ω , so that the major role of the low-pass filter is not affected. The order of the 

high-pass filter can be selected as an additional parameter to help keep the drift under 

control. 

As an example, Fig. 3.4 shows the magnitude of the transfer characteristic of the 

combined low-pas filter and a high-pass filter of 8th order, which is an actual filter 

used in computations in this algorithm. 

Since filtering distorts the DC level, we restore this information through the 

self-calibration in the following way. Before gait initiation, the subject needs to 

remain standing still (and sensors immobile) for at least two seconds. During this 

interval, the initial conditions are determined for each pair of accelerometers by using 

them as inclinometers. 

The procedure of approximating the double integration can be applied both for 

reconstruction of absolute angles (the angles between the rod axes and the vertical 

axis of the fixed coordinate system) and the reconstruction of the joint angles. For 

example, the knee angle is obtained directly from the difference  
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ltalta xx /)(/)( shankthigh Δ−Δ   (6) 

by performing the bi-directional filtering, and divide the result by 2
0ω− . An 

analogue procedure is performed for the ankle angle.  

Experiments 

This algorithm was tested on 27 healthy subjects walking on the ground with 

their natural pace. In order to provide a more systematic validation, we additionally 

recorded 10 subjects (age: 26 ±1.5 mean±SD) walking with various velocities on 

treadmills (Life Fitness 9500hr and Panatta Advance Lux 1AD003), whose results are 

presented in this chapter.  

Four trials per subject were recorded. Besides walking, recording sequence also 

included standing still for at least 2 s before and after each walking sequence, which 

was used for self-calibration and checking. Subjects were walking with various 

velocities on a treadmill, starting from 0.15 m/s and incremented by 0.05 m/s until 

2 m/s. As the reference system for this study, we used flexible goniometers SG110 

and SG150 with the joint angle units for signal conditioning (Biometrics, Gwent, 

UK). Goniometers were mounted on the lateral side of the leg (at the ankle and knee 

joints) following the instructions of the manufacturer. Simultaneously, the sessions 

were recorded with a video camera for later analysis. 

Processing of measured data 

Based on the recorded accelerometer data, the joint angles were estimated by the 

proposed algorithm. Also, joint angles recorded by goniometers were computed. The 

accuracy of our algorithm was evaluated in terms of the root-mean-square error 

(RMSE) as well as the Pearson’s correlation coefficients (PCCs) between the 

goniometer results and angles provided by the proposed method. RMSE is expressed 

in degrees. PCC values range between −1 and 1, where 1 represents the best possible 

similarity between the two sets of angles (identical shapes). The first and the last 

stride were excluded from each trial, and comparison between goniometer signals and 

angles provided by our method was done on the remaining sequence. The data 

processing was done offline in Matlab 7.5 (Natick, MA, USA).  
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Results  
Two typical examples for the knee and ankle angles are shown in Fig. 3.6. The 

error was defined as the difference between the angles obtained by the proposed 

method and the angles obtained from goniometers. 

Based on the results obtained from treadmill recordings, the cutoff frequency for 

the knee angles should be in the range [ gcf /3, gcf /2], where gcf  is the gait cycle 

frequency. The blue area in Fig. 3.6 shows the family of curves estimated by our 

method when filtered with various frequencies in the range [ gcf /3, gcf /2]. 

 

Figure 3.6. Knee and ankle joint angles measured with goniometers and estimated from accelerometers. 

Thick lines represent angles from goniometers (dashed line) and accelerometers (solid line) for optimal 

filter frequency. Blue areas show the range of angle values estimated from accelerometers when 

filtered with various frequencies in the range [ gcf /3, gcf /2]. 

Fig. 3.7 shows the optimal filtering frequency versus gait cycle frequency. The 

squares represent optimal points obtained by maximizing Pearson’s correlation 

coefficient and minimizing RMSE between our results and the angles obtained by 

goniometers for each walking trial (different gait velocity). The straight lines are 

obtained by fitting these data. It is obvious from Fig. 3.7 that signals for the 

estimation of the ankle angles should be filtered with about two times higher cutoff 

frequency than the signals used for the estimation of the knee angles. These findings 

are in agreement with the theoretical background from the previous section.  
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Figure 3.7. Optimal filtering frequencies for knee and ankle angles versus gait cycle frequency. 

The higher cutoff frequency of the filter for the ankle angle can be used because 

the spectrum of the ankle angle has a very pronounced second harmonic. This is 

convenient, because the influence of the drift is further suppressed. 

Using the proposed algorithm, for each subject and each trial, we evaluated the 

PCC and RMSE values between the angles estimated by our method and goniometer 

outputs. Fig. 3.8 shows the PCC and RMSE, respectively, as a function of normalized 

frequency, for various velocities. Although we recorded velocities from 0.15 to 0.2 

m/s in the steps of 0.05 m/s, Fig. 3.8 shows results for a subset of the recorded 

velocities. 
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Figure 3.8. Pearson’s correlation coefficient (PCC) and RMSE between goniometers and estimated 

angles, for knee and ankle angles, vs. filtering frequency in the range [ gcf /3, gcf /2]. The 

normalization is with respect to the optimal frequency. Each curve corresponds to different gait 

velocity (in m/s). 

As shown in Fig. 3.8, all RMSE curves have broad minima, which are, on 

average about 1. These results are in accordance with PCC curves, confirming that the 

optimum normalized cutoff frequency is 1. Cumulative results for all walking trials 

and all subjects are presented in Figure 3.9.  

 

Figure 3.9. Boxplots presenting comparison between joint angles (for knee and ankle angles) calculated 

from accelerometers and goniometers. Left: Pearson’s correlation coefficient (PCC). Right: root-mean-

square error (RMSE). 
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Discussion and Conclusions  
The presented results are based on a model which assumes that the lower limbs 

move in the sagittal plane. For healthy subjects, this 2-D model has proven to be 

sufficient, because the sagittal plane is the plane where the majority of movement 

takes place. Generally, for clinical applications, the proposed method provides an 

acceptable accuracy for angles and high correlation coefficients with the 

measurements obtained from goniometers. 

In particular, PCCs for the knee angle are higher than 0.97 and RMSE is within 

6º for the angle values. Further, our results showed that a 5º RMSE is obtained for 

walking velocities in the frequency range gcf ∈  [0.35, 1.15]. This corresponds to all 

velocity curves in Fig. 3.8 except for v=0.15 m/s, 1.8 m/s, and 2.0 m/s (the slowest 

and fastest recorded walking). Regarding the ankle angles, PCCs are slightly lower 

and in the range from 0.85 to 0.97, while RMSE is from 2º to 4.7º.  

For both estimated joint angles (except for the extreme velocities for the knee 

angle), this error is in the range of 5º mean error limit accepted by the American 

Medical Association to consider the measurements reliable for the evaluation of 

movement impairments in a clinical context (Zheng et al., 2005). The accuracy of our 

simple system is comparable to the accuracy demonstrated in plots presented in 

(Ferrari et al., 2010), which were obtained by much more complex hardware and 

software. 

Joint angles were determined by subtracting the absolute angles of the 

neighboring leg segments. The error of our method was estimated based on joint 

angles and includes errors from the two segments. In this way, the total error of the 

joint angle estimation is different than the error of the absolute angles. Hence, 

comparison of the absolute angles with a camera system would be more appropriate 

for validation of the proposed method. However, such a comparison was not possible 

in our experiments because the treadmill would present a visual obstacle between 

cameras and markers. Since our main goal was to investigate how our method 

performs for various gait velocities, the treadmill was the important part of the 

experiments. Therefore, we selected goniometers as the reference system, which have 

±2º accuracy and 1º repeatability (Biometics Datasheet). Although electrogoniometers 

are prone to errors due to potential misalignment with the femur and tibia segment in 
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the sagittal plane, this does not affect the validation of our method since we secured 

sensor units to be aligned with goniometer blocks.  

Skin motion artifacts cause errors to all body-fixed sensors. Sensors placed on 

thighs are more susceptible to skin and soft tissue related motion, because the 

majority of femur is concealed by a substantial amount of soft tissue. However, the 

errors that we report here are much smaller than errors due to rod misalignment in the 

procedure proposed by Willemsen et al. (1990).  

Another limit for this algorithm is the velocity of subject’s gait. As it can be 

seen from Figs. 3.7 and 3.8, if the gait is very slow, the quality of our method 

decreases. This is due to very low angular accelerations, whose major component 

comes from the impacts. This suggests that for a very slow walk, e.g., for subjects 

with high levels of disability, the quality of the angle estimation may not be 

acceptable. However, for very slow gait, accelerometers can be used as inclinometers 

and angles can be successfully estimated in this way (Mizuike et al., 2009).  

In our method, we do not need information about the distances to joint centers 

or distances between sensor rods placed on different segments, which is one of the 

benefits of this algorithm. The only request for mounting the sensors is that they 

follow the segment line (to be aligned with a line connecting adjacent joints, viz. hip 

and knee, knee and ankle, and along the foot and parallel to the ground).  

This algorithm could be used not only for level walking, but also for estimation 

of angles during slope walking, stair climbing, or any other rhythmical (periodic) leg 

movements. It can also be used for estimation of other segment and joint angles, as 

long as the movements are in 2-D. However, movements should be fast enough so 

that the angular acceleration signal is sufficiently above the noise floor. The proposed 

method is suitable for postprocessing of raw data. However, it can also be included 

into real-time algorithms to estimate the angles of the leg segments with a delay of 

one stride. 

The proposed method is simple and computationally efficient. We have 

demonstrated that it yields accurate shapes of the ankle and knee angles. The accuracy 

of the method is sufficient for quick diagnostics of gait, as well as for applications of 

gait control.  
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4. Nonlinear optimization for drift 

removal in estimation of gait 

kinematics based on accelerometers∗ 

Drift removal by polynomials 
Inertial sensors are prone to time varying offset and other problems (such as 

nonlinearities), which introduce an error in the measured signals. Upon integration of 

the signals, these errors cause drifting of the results (Fig. 3.3).  

As an example, we consider the translation in 3-D. We assume to have 

measured (by accelerometers) three components of the linear acceleration in the fixed 

coordinate system ( zyx aaa ,, ). By one integration with respect to time, we obtain the 

components of the linear velocity. By one more integration, we obtain the components 

of the displacement vector. Both the linear velocity and the displacement contain drift. 

Note that the first derivative of the drift in the velocity gives the error in the 

accelerometer signals. Similarly, the second derivative of the drift in the 

displacement, gives the error in the accelerometer signals. 

We present here a simple technique for reducing the drift. It is based on 

approximating the drift by a polynomial. Consequently, the error in the accelerometer 

                                                 
∗ This chapter is based on: Djurić-Jovičić M., Jovičić N., Popović D.B., Djordjević A.R., “Nonlinear 

Optimization for Drift Removal in Estimation of Gait Kinematics Based on Accelerometers”, Journal 

of Biomechanics, November 2012, Volume 45(16), pp. 2849-2854. 
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signals is also approximated by a polynomial, which is the second derivative of the 

polynomial that approximates the drift. 

We consider the time interval of one stride, between two anchoring points. At an 

anchoring point, the foot is assumed to be fully at rest, touching the ground. Hence, at 

an anchoring point, we know the following: 

1. the linear velocity is zero ( 0=== zyx vvv ), 

2. the linear acceleration is zero ( 0=== zyx aaa ), 

3. the z coordinate of the foot is zero ( 0=z ). 

We assume that the drift in a signal can be approximated by a polynomial, 

which is added to the true signal. Based on the data at the anchoring points, we 

estimate the coefficients of this polynomial. Thereafter, we subtract the polynomial 

from the reconstructed signal. Thus we at least partly remove the drift and hence 

improve the reconstruction. 

For the x component and the y component of the acceleration, we have sufficient 

information to use a quadratic polynomial (with three coefficients). For the z 

component we use a cubic polynomial (with four coefficients). 

Drift removal from x and y components of acceleration 

We assume 0=t  at the beginning of the stride (the first anchoring point) and 

Tt =  at the end (the second anchoring point). By )(ta  we denote the x component of 

the acceleration reconstructed from the algorithm up to this point. We consider only 

the x component. The algorithm for the y component is identical to this one. 

The actual acceleration (which is not known, but which we want to estimate 

better) is )()()( tetatA −= , where )(te  is the error. We approximate the error by a 

quadratic polynomial, 2
2102 )()( tctcctpte ++=≈ , where 210 ,, ccc  are unknown 

coefficients. Hence, we have approximately 
2

210)()( tctcctatA −−−= . (1.16) 

At 0=t , 0)0( =A . From (1) we have 

0)0(0 ca −= . (1.17) 

At Tt = , we also have 0)( =TA . Hence, 

2
210)(0 TcTccTa −−−= . (1.18) 
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We now integrate (1) on the interval ),0( T . The integral of )(tA  is the velocity 

at Tt =  and it must be zero (because Tt =  is an anchoring point). The integral of 

)(ta  can be represented as aTtta
T

=∫
0

d)( , where a  is the average value. Hence, we 

have  

32
0

3

2

2

10
TcTcTcaT −−−= . (1.19) 

From (2) we have )0(0 ac = , from (3) we have )0()(2
21 aTaTcTc −=+ , and 

from (2) and (4) we have )0(
32

2

21 aaTcTc −=+ . Now, we have a system of two 

equations in terms of 21, cc , whose solution is ( ))()0(22
2 Taaa

T
c −−= , 

( )aTaa
T

c 2)()0(3
22 −+= . 

Having evaluated )2(2p , we now have a better approximation to the actual 

acceleration, )()()( 2 tptatA −≈ , and we use this approximation in subsequent 

computations. 

Drift removal from z component of acceleration 

The procedure is similar as for the x and y components. Now, 
3

3
2

2103 )()( tctctcctpte +++=≈ , so that we have approximately 

3
2

2
210)()( tctctcctatA −−−−= . (1.20) 

At 0=t , 0)0( =A  so that )0(0 ac = . Although we could have evaluated the 

remaining coefficients analytically, we used a numeric approach. Based on the 

remaining anchoring conditions, we formed a system of linear equations in terms of 

321 ,, ccc  and solved it using matrix inversion. 

First, we integrated )0()( ata −  numerically (using time stepping) to obtain the 

velocity, )(tv , and the displacement, )(tz , with the initial conditions 0)0( =v  and 

0)0( =z . Note that the acceleration, velocity, and displacement are plagued by the 

drift.  

From the condition 0)( =TA , we obtain the first equation, 
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)0()(3
3

2
21 aTaTcTcTc −=++ . (1.21) 

From the condition 0)( =TV , where )(tV  is the actual velocity, i.e., the integral 

of )(tA , we obtain 

)(
432

4

3

3

2

2

1 TvTcTcTc =++ . (1.22) 

Finally, from the condition 0)( =TZ , where )(tZ  is the integral of )(tV , we obtain 

)(
20126

5

3

4

2

3

1 TzTcTcTc =++ . (1.23) 

By solving the system (6)-(8), we obtain 321 ,, ccc , and, hence, )(3 tp  becomes 

known. 

Application of nonlinear optimization 
The drift removal presented at the previous subsection has limited capabilities, 

because the correcting polynomial has only a few unknown coefficients. Hence, we 

have only a few degrees of freedom to estimate the error. Keeping the idea of 

approximating the error in signals by a polynomial, which is a relatively slowly 

varying function of time, we upgrade the technique from the previous subsection to 

enable a better approximation of the error, and thus more efficient drift removal, using 

a more sophisticated technique, based on  nonlinear optimization using simplex 

algorithm (Nelder and Mead, 1965; Lagarias et al., 1998). Our approach assumes that 

we have two or more independent sensors that directly or indirectly measure the same 

kinematical quantity. The goal of the algorithm is to estimate the drift and cancel it. 

We demonstrate the method by using data from arrays of accelerometers. However, 

the method is applicable to data coming from gyroscopes or other sensors when 

integration of original signals is required. The method is applicable for real-time data 

inspection and postprocessing that is of interest for gait analysis. 

Method and Materials 

Sensor system with accelerometers 

Each sensor unit has the form of a short rod on which two accelerometers (A1 

and A2) are mounted. The rods are placed along the direction of the long axes of the 

leg segments at the lateral side (Fig. 4.1). The model discussed here is related to the 
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planar analysis (2-D) in the sagittal plane. The local Cartesian coordinate system 

O'x'y'z' of a rod has the origin midway between the accelerometers, and two sensors 

aligned with the y' axis. The z' axis is perpendicular to the sagittal plane. We consider 

that the Oxy plane of the fixed (global) Cartesian coordinate system (Oxyz) coincides 

with the plane (O'x'y'). The position vector of O' is yx yxtOO iir 000 )(' +== , where 

xi  and yi  are the unit vectors of the Oxyz system. The vector ylil =  connects the two 

sensors (l is the distance between the sensors). The position vectors of the 

accelerometers are 2/01 lrr −=  and 2/02 lrr += . 

x′
z′

y′

x′
z′

y′

thighψ

shankψ footθ

hipψ

kneeψ ankleθ

y′

x′

θ

 

 (a) (b) 

Figure 4.1 – (a) Experimental setup showing sensors, markers, and coordinate systems. (b) Sensor unit 

with two accelerometers. 

Each accelerometer measures the acceleration vector of the sensor with respect 

to the fixed system: 

glrgra −−=−=
2d

d
..

..

02
1

2

1 t
, glrgra −+=−=

2d
d

..
..

02
2

2

2 t
, (1) 

where g is the gravity acceleration. The acceleration vector is measured in terms of its 

Cartesian components in the system O'x'y'z'.  

The average signal from the two accelerometers gives 

( ) 0

..

021 2 agraa =−=+ (this signal would be obtained from a single accelerometer 

located at O'). Following the derivation from Djuric-Jovicic et al. (2011), the 
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difference of the accelerometer signals is '
2

'

..

12 yx ll iilaa ω−α−==− , where 

tddθ=ω  is the absolute angular velocity. The difference of the 'y  components is 

proportional to the centripetal (radial) acceleration 2
''1'2 ω−=Δ=− laaa yyy . The 

angular velocity vector is 'ω ziω= . The difference of the 'x  components comes from 

the tangential components of acceleration, α−=Δ=− laaa xxx ''1'2 , where tddω=α  is 

the absolute segment acceleration. Hence, we evaluate the squared angular velocity as  

l
ay '2 Δ

−=ω , (2) 

and the angular acceleration as 

l
ax 'Δ

−=α . (3) 

Algorithm 

The data determined by Eq. (2) and (3) are used to reconstruct the segment 

angles. The key novelty of the method is to model the drift by a slowly-varying 

function of time. We used a cubic spline polynomial, )(tp  that is defined by a set of 

discrete points (knots). The knot time instants are predefined at intervals of 100 ms. 

We generate a new dataset by modifying the angular acceleration )(tα  obtained from 

Eq. (3) by adding a polynomial, )(tp . We estimated the knot ordinates by nonlinear 

numerical optimization with the goal to reduce the drift.  

The knot ordinates are tuned using the simplex optimization procedure (Nelder 

and Mead, 1965; Lagarias et al., 1998) to minimize a cost function that reflects errors 

due to the drift in the angular velocity )(tω  and in the angle )(tθ .  

We utilize two sets of data in order to estimate these errors. The first set consists 

of the squared angular velocity: we use the information about the centripetal 

acceleration to remove the drift from the angular velocity. The second set consists of 

“anchoring data”, which are based on the knowledge of the sensor array state at 

certain intervals (anchoring intervals) during each gait cycle, similarly to Tong et al. 

(1999) and Schepers et al. (2007). The foot is practically stationary during mid-stance 

phases, when both heel and metatarsal area are in contact with the ground, and the 

accelerations (linear and angular) and velocities are close to zero value. The foot 

elevation above the ground at this time and the foot angle can be assumed to be zero.  
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During the mid-stance phases, the foot angle is calculated by using the 

accelerometers as an inclinometer because accelerometers are affected only by the 

gravity since the velocity and accelerations are zero. This angle is approximately zero, 

the deviation being mainly caused by mounting errors. The foot elevation at these 

time intervals is assumed to be zero. In reality, the foot elevation at these intervals 

depends on the placement of the sensors on the foot, which depends on subject’s 

anatomy and shoe type. The sensors are mounted as low as possible on the medial 

side of the shoe, several centimeters above the ground. For all tested walking speeds 

the assumption that the elevation is zero showed to be valid, and it did not affect the 

accuracy. However, for applications like running and severely impaired gait where 

there are no foot-flat intervals, this assumption should be taken with care and requires 

some alterations in the model. 

The anchoring intervals are identified from the accelerometer signals as 

intervals, at least 0.1 s long, when all acceleration signals are sufficiently small 

(below the threshold). During these intervals, θ can be evaluated as 

),(atan2 '' xy aa −=θ , (4) 

where atan2 is the four-quadrant inverse tangent function defined in Matlab program. 

At the anchoring intervals, for healthy gait patterns and proper sensor alignment, 

0≈θ . 

We integrate the modified angular acceleration, )()()(~ tptt +α=α , to obtain the 

estimate of the angular velocity, )(~ tω . We integrate the result once again to obtain the 

estimate of the angle, )(~ tθ . Both integrations are performed from a time instant 

within an anchoring interval. Hence, the initial condition for )(~ tω  is 0, and the initial 

condition for )(~ tθ  is evaluated from Eq. (4). For off-line applications, we integrate up 

to the next anchoring interval, when we incorporate the next set of anchoring data. For 

real-time applications, we integrate up to the current time instant, until we run into the 

next anchoring interval. Thereafter, we restart the algorithm towards the next 

anchoring interval. 

The cost function is a weighted sum of two error terms, 

( ) ( )∑∑
ωω

=θ

θ

=ω

ω θ−θ+ω−ω=
N

i
ii

N

i
ii N

w
N
w

c
1

2

1

222 ~~ , (5) 
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where ωw  and θw  are weights, ωN  is the total number of samples from the 

integration, and θN  is the total number of samples during the anchoring intervals. The 

first term in Eq. (5) reflects the difference between the estimated squared angular 

velocity, 2~ω , and the “true” 2ω  (reference) obtained from Eq. (2). For illustration, 

Fig. 2 shows the measured and estimated squared angular velocities without the 

correcting polynomial and after obtaining the optimal polynomial, )(tp . The second 

term in Eq. (5) reflects the difference between the estimated angle )(~ tθ  and the 

reference from Eq. (4). 

 

Figure 4.2 – The square of the angular velocity obtained directly from Eq. 2, and by integrating raw 

accelerometer data (Eq. 3) and using accelerometer data corrected by the optimized polynomial.  

The optimization starts from a randomly selected set of knot ordinates. During 

the optimization, the cost function is minimized by fine-tuning )(tp , thus minimizing 

the differences between the estimated and the reference values. The optimization 

yields an estimation of the absolute foot angle, )(~ tθ , which is virtually drift-free. 

To evaluate the trajectory of O', it is essential to have an accurate foot angle, 

which is used to transform the components of the linear acceleration from the moving 

coordinate system to the fixed system. We found heuristically that the optimal 

weights are 4)srad(1 −
ω =w  and 2rad100 −

θ =w , which approximately equalize the 

two terms in Eq. (5).  

The real-time application of the proposed method for the foot angle and the 

importance of anchoring points are illustrated in Fig. 4.3. Square markers denote the 

beginnings of the anchoring intervals, and round markers denote the endings. The foot 

angle obtained from the optical system is shown as reference.  
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Three sets of results obtained from the accelerometers are shown in Fig. 4.3. 

The first set is obtained by the numerical integration of )(tα , without drift correction. 

The integration starts within an anchoring interval. The initial conditions are obtained 

based on the optimized angle from past strides. These curves show a strong drift, 

which increases as time progresses. 

 

Figure 4.3 – Comparison of the angle without drift correction, angle optimized up to the current time 

(real-time application), angle optimized until the next anchoring point (optimized full stride), and angle 

from reference optical system. The anchoring intervals are between square and round markers. 

For the second set, optimization starts within one anchoring interval and 

terminates within the next anchoring interval, thus spanning one complete stride. Such 

curves are typically obtained by off-line processing. They are also obtained in real-

time applications for the strides preceding the current stride. 

The third set is obtained from optimizations that start within one anchoring 

interval and span less than a complete stride. These curves are shown for time 

increments of 0.1 s. For each curve, anchoring data are used at the beginning of the 

time interval involved in the optimization, whereas data for 2ω  are used during the 

whole interval. When the termination of the time interval reaches the subsequent 

anchoring interval, the corresponding anchoring data are also used. Hence, the error 

of )(~ tθ  increases as the time progresses until the anchoring data become available (at 

the end of the time interval). Thereafter, the error abruptly diminishes and the 

optimized curve for the current time coincides with the optimized curve for the full 

stride (Fig. 4.3).  

We proceed to the evaluation of the trajectory of O'. The components of the 

acceleration 0a  in the moving coordinate system are transformed to the fixed 

coordinate system as )(cos)()(sin)()( '' ttattata yxx θ+θ=  and 

)(sin)()(cos)()( '' ttattata yxy θ+θ−= , and the influence of the gravity is subtracted 
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from )(tay . We integrate )(tax  and )(tay  twice. The first integration gives the 

corresponding components of the linear velocity. The second integration gives the 

Cartesian coordinates, )(tx  and )(ty . At the beginning of the analyzed gait sequence, 

we set both coordinates to zero. To remove the drift, we perform independent 

optimization procedures for each coordinate using similar correcting polynomials and 

identical anchoring intervals as for )(~ tθ . For )(~ tx , during each anchoring interval, the 

linear acceleration and the linear velocity are zero. For )(~ ty , we have an additional 

piece of information: the foot touches the ground and, hence, 0)(~ =ty . The cost 

functions for the coordinates are similar to the one given in Eq. (5). They include 

terms for the acceleration and velocity at the anchoring intervals, and for )(~ ty , there 

is another term for the elevation.  

We have now defined the complete motion of the foot. To “build” the remaining 

two segments of the leg (shank and thigh) on top of the foot segment, we need to 

calculate their segment angles defined in Fig. 4.1a. We perform similar optimizations 

as for the foot angle. The first reference for optimization is the squared angular 

velocity, as in Eq. (5). The second reference is the angle )(tψ  obtained by starting 

from the foot angle and adding it to the estimation of ankle angle obtained as follows. 

The foot, shank, and thigh segments are regarded as a kinematic chain and the joint 

angles are evaluated after Willemsen et al. (1990, 1991) and using the generalization 

after Dong et al. (2007). The joint angle is calculated from the best-fit rotation matrix 

that matches the joint-center acceleration calculated from accelerometers on one 

segment (e.g., foot) with that calculated from the adjoining segment (e.g., shank). To 

that purpose, we need to know position of accelerometers relative to each joint 

The optimization yields the absolute shank angle (Fig. 4.4), whence we calculate 

the ankle angle (Fig. 4.5). The thigh optimization is performed in a similar manner, 

using the knee angle for anchoring, and resulting in the thigh angle (Fig. 4.4) and the 

knee angle (Fig. 4.5). This completes the reconstruction of the gait, resulting in the leg 

stick diagram shown in Fig. 4.6. 
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Figure 4.4 – Segment angles estimated from the accelerometer data and measured by the camera based 

system (reference).  

 

Figure 4.5 – Joint angles estimated from the accelerometer data and measured by the camera based 

system (reference). 

 

Figure 4.6 – Stick diagram of the leg and trajectories of leg joints estimated from the accelerometer 

data (dashed lines) and measured by the camera based system (solid lines). 
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Procedure for testing the method  

We recorded the gait pattern in 10 healthy young subjects (age: 31±4 mean±SD) 

who gave their informed consent. The procedure was approved by the local ethics 

committee. Subjects were asked to walk for 10 m on level ground at three speeds 

(slow, normal and fast). The data was collected from five trials at each gait speed. In 

parallel, the reference results (target trajectory) were measured by the EvArt system 

(6 cameras, 100 Hz sampling rate) in the Health Technologies Unit, Tecnalia, San 

Sebastian, Spain, and by the Qualisys system (8 cameras, 200 Hz sampling rate) in the 

Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark. For 

both set-ups, reflective markers were placed on the anatomical landmarks of the joints 

(hip, knee, ankle, heel, and 1st and 5th metatarsal points), and on the two ends of each 

sensor unit (Fig. 4.1). To ensure visibility, the foot markers were actually placed 2 cm 

above the SU ending points.  

The acquisition system used for data collection is a distributed wireless sensor 

network (Djuric-Jovicic et al., 2011, Jovicic et al., 2012). SU were placed as shown in 

Fig. 4.1a, one per each leg segment. Each SU comprises two 12-bit digital 

accelerometers LIS3LV02 (SGS-Thomson Microelectronics, USA) mounted on the 

print-circuit board at a distance of 55 mm, with the 'y  axes aligned. The range of 

accelerations can be selected by software to g2± and g6± . 

Results 
For the estimation of angles, the accuracy of our algorithm was evaluated in 

terms of the root-mean-square error (RMSE, in degrees) and by the Pearson 

correlation coefficients (PCCs) between the camera results and angles provided by the 

proposed method (Fig. 4.7). Based on the results of the t-test for two independent 

samples, there is no significant difference between the angles obtained from the 

camera system and the proposed method )05.0( >p , which can also be seen from the 

boxplots in Fig. 4.7. Regarding the estimation of the stride length, the average error 

was 2% (min: 0.05%, max: 3.9%), i.e., around 2.5 cm per stride and 10 cm for the 

whole recorded sequence. 
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Figure 4.7 –The RMS error and Pearson correlation coefficients between angles estimated from camera 

system and the proposed method for the ten subjects in the study.  

Discussion and Conclusion  
The proposed method gives accurate estimation of lower limb angles during gait 

and their trajectories in the sagittal plane. The results for all subjects are in agreement 

with those of the reference camera system, showing small RMS errors and high PCC 

(Fig. 4.7).  

The existing differences between results coming from our method and the 

reference system could be considered systematic, since their minima and maxima are 

periodical in the same time interval within the gait cycle. The average shank angle 

difference is 2.5°. It reaches 5° during mid-stances, falls below 2° during swing 
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phases, and decreases towards heel contact events (round grey markers in Fig. 4.4). 

Similarly, for the thigh angle, the maximal difference is during mid-swing and 

terminal swing phases, before heel contacts. The maximal differences occur at each 

turning point moment when the thigh segment goes forward, and then it starts going 

backwards in order to prepare the foot for contact with the ground. This change in 

movement direction is prone to soft tissue artifacts of the thigh, which provoke spikes 

in accelerometer signals. This could be corrected by the filtering accelerometer data 

during this gait sub-phase. However, it would provide additional delay and decrease 

the real-time applicability of the method. Since joint angles are evaluated from the 

differences of the segment angles for neighbouring segments, the errors for joint 

angles are directly influenced by the errors in the segment angles. However, for most 

gait analysis applications, the proposed method provides satisfactory accuracy and 

reliability. The range of errors is comparable with the errors coming from the 

movement of the sensor on the leg, and, even more important, comparable with stride-

to-stride variability of the gait pattern.  

The simplex algorithm is robust and one of the most efficient derivative-free 

local optimizers. In our application, it converged towards acceptable solutions within 

several hundred iterations which can be implemented in real-time on a medium-

performance computer. The optimization could be restarted from another randomly 

selected initial data, but this was never needed in the cases we examined. Other robust 

optimization techniques may be applied as well, such as the particle swarm 

optimization, simulated annealing etc. 

The drawback of the method is that it requires the positions of the 

accelerometers with respect to the joints as the reference for ankle and knee angle. 

However, the results are not very sensitive to the accuracy of these positions. Also, 

the reference angles are prone to errors due to tissue movement. However, our 

optimization function involves averaging, which smoothes-out these errors. 

The current model is limited to 2-D sagittal kinematical analysis. Although the 

3-D gait analysis is important for some clinical applications, in many cases the 

information from 2-D kinematics gives sufficient data for pathologies related to knee 

and ankle (Sabatini et al., 2005).  

The optimization method for reduction of errors in estimated kinematical 

parameters is applicable in all cases where two sets of data describe the same 
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movement. The estimation of the 3-D movement based only on accelerometers, using 

the present approach, requires hardware with more accelerometers that are mounted in 

a 3-D arrangement. By using four accelerometers in a  spatial arrangement, it is 

possible to assess the squared angular velocity for all three orthogonal axes; thereby, 

estimate the 3-D kinematics. 

The algorithm developed is applicable for real-time and off-line analysis of gait. 

The method does not need any adaptation with respect to gait velocity or individuality 

of gait. The method can also be applied for various gait modalities (subjects with 

different levels and types of gait disability). 

Since the appearance during the last few years of low-cost miniature gyroscopes 

on the market, many new methods for motion analysis implement fusion of different 

sensors trying to eliminate drift and minimize the estimation error. Hence, kinematical 

analysis based on accelerometers alone might be considered obsolete. However, 

regarding sensor technology, the state-of-art is such that the current consumption of 

MEMS accelerometers is three orders of magnitude lower than of rate gyroscopes, 

which could be a significant advantage of the proposed system compared to 

conventional IMU systems. 

Accelerometers are excellent for demonstrating the implementation of the 

optimization: our method compares favourably with other methods for estimation of 

segment and joint angles. Furthermore, the method can be easily used with IMUs 

consisting of one gyroscope and two accelerometers. Pairs of accelerometers can 

provide reference data for joint angles which can be used to reduce the drift. A single 

accelerometer can provide the reference angle only for a steady limb segment, which 

may be used for the foot at anchoring intervals, but not for the shank and thigh 

segments. However, accelerometer pairs can provide reference angles for all 

segments. The drift in the integration of the gyroscope signal could be removed using 

the information about these angles as in the proposed method, providing reliable 2-D 

and 3-D movement analysis. 

Extension to 3-D analysis 

Let us assume that four 3-D accelerometers (an accelerometer quad) are 

located in a spatial arrangement, as shown below. (The axes of the quad need not be 

aligned with the axes of the fixed coordinate system.) 
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The Cartesian coordinates of the accelerometers are )0,0,0(O , )0,0,(dA  , 

)0,,0( dB , and ),0,0( dC . The difference of readings of x-components of accelerometers 

A and O yields the centripetal acceleration due to rotation about both axes y and z, i.e., 

d
s

d
aa xzy

OxAx =
ω+ω

=−
22

. (A proof may be needed that squared components of the 

angular velocity add up.) Similarly, 
d
s

d
aa yxz

OyBy =
ω+ω

=−
22

 and 

d
s

d
aa zyx

OzCz =
ω+ω

=−
22

. From these three equations, we have 
2

2 xzy
x

sss −+
=ω , 

2
2 yxz
y

sss −+
=ω , and 

2
2 zyx
z

sss −+
=ω . 

We can now implement the method of drift reduction by optimization (DRO) 

to reconstruct the components of the angular velocity. In this way, the accelerometer 

quad can replace three gyroscopes. 

However, this technique can reduce the drift only in the angular velocities, and 

not the angles. More information is required for angles. For example, during stance 

phases, two angles for the foot can be obtained using accelerometers as inclinometers. 

However, the third angle is missing (same as we had for 3-D gait reconstruction, 

where we needed to include an angular correction by an educated guess). For the knee 

and ankle angles, it may be worth seeing if the Willemsen method can be generalized. 
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5. 3-D Gait Analysis from 

Accelerometers and Gyroscopes 

Introduction  

In Chapter 2, we introduced global and local coordinate systems and the need 

for defined relationships between them. In order to perform the gait analysis, we need 

to transform various vectors (e.g., position, linear and angular velocity and 

acceleration) from one coordinate system into the other system. Movements of the 

local system can be separated as translation of the coordinate origin and rotation of 

the system. 

We consider a position vector r, knowing it in one coordinate system (in terms 

of its Cartesian components), and we want to get its Cartesian components in the 

other coordinate system. For the purpose of introducing the rotation matrix, we 

assume that the origins of the two coordinate systems coincide. 

However, in the general case, the coordinate origins are distinct. Hence, the 

transformation from one coordinate system into the other one should include the 

translation between the two origins, in addition to the rotation. 

Transformation matrices 

In order to provide transformations between local coordinate system (sensors) 

and global coordinate system (room), we have to specify the orientation of one set of 

axes relative to another set. We assume that the two sets have a common origin. One 

typical approach is to state the direction cosines of one set of axes (primed) relative to 

the unprimed. In this way, the x axis could be specified by its three direction cosines 
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of angles between the unit vector of the axis under consideration and the respective 

axes of the unprimed system, cosines of the angles 131211 ,, θθθ  in Fig. 5.1.  

x

y
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iz

iy

ix

y
x

z

iz

ix iy

 

Figure  5.1 – Angles between the axes of the primed and unprimed system. 

If zyx iii  , ,  are three unit vectors along x, y, z, and zyx ' ,' ,' iii perform the same 

function in the primed system x’, y’, z’ (Fig. 1), then these direction cosines are 

defined as: 

xxxxxx iiiiii ⋅=⋅=∠=θ ''))',((coscos 11 , 

xyyxyx iiiiii ⋅=⋅=∠=θ ''))',(cos(cos 12 , (5.1) 

xzzxzx iiiiii ⋅=⋅=∠=θ ''))',(cos(cos 13  

yxxyxy iiiiii ⋅=⋅=∠=θ ''))',(cos(cos 21 , 

and similarly for 312322 cos,cos,cos θθθ  etc. The angle IJθ is defined so that the first 

index refers to the unprimed system and the second index to the primed system.  

These direction cosines can also be used to express the unit vector in the primed 

system in terms of the unit vectors of the unprimed system: 

131211 cos'cos'cos' θ+θ+θ= zyxx iiii , 

232221 cos'cos'cos' θ+θ+θ= zyxy iiii , (5.2) 

333231 cos'cos'cos' θ+θ+θ= zyxz iiii . 

These sets of nine direction cosines ( IJθcos ) completely specify the orientation 

of the x, y, z axes relative to the x’, y’, z’ axes. In a similar way, we can express unit 

vectors zyx ' ,' ,' iii  in terms of zyx iii  , , .  
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Let us now assume that we know the position vector r in the global (unprimed) 

system. Using the above transformations, we can evaluate the components of the 

position vector in the primed coordinate system, as 

zyxzyx zyxzyx '''''' iiiiiir ++=++=  (5.3) 

The coordinates of a point in a given reference frame are the components of the 

position vector, r, along the primed and unprimed axes of the system, respectively. 

The primed coordinates are given in terms of x, y, z, as shown in Eq. 5.4. 

131211 cos'cos'cos' θ+θ+θ=⋅= zyxx xir  

232221 cos'cos'cos' θ+θ+θ=⋅= zyxy yir  (5.4) 

333231 cos'cos'cos' θ+θ+θ=⋅= zyxz zir  

The direction cosines can be considered as coordinates describing the 

instantaneous orientation of the body, relative to a coordinate system fixed in space 

but with origin in common with the body system. These coordinates are not 

independent, from nine of them only three coordinates are needed to specify an 

orientation. 

The basis vectors in both coordinate systems are orthogonal to each other and 

have unit magnitude; therefore 0=⋅=⋅=⋅ xzzyyx iiiiii  and 

1=⋅=⋅=⋅ zzyyxx iiiiii , and similarly for zyx ' ,' ,' iii . 

,0coscos
3

1
' =θθ∑

=
lm

l
lm  'mm ≠ , orthogonality property (5.5) 

∑
=

=θ
3

1

2 1cos
l

lm , normality property (5.6) 

Equations 5.5 and 5.6 are together referred to as the orthonormality property. 

The transition from coordinates fixed in space to coordinates fixed to the rigid 

body (with a common origin) is accomplished by an orthogonal transformation. The 

array of transformation quantities (direction cosines) are called the matrix of 

transformation, which is defined as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθθ
θθθ
θθθ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

'
'
'

coscoscos
coscoscos
coscoscos

333231

232221

131211

z
y
x

z
y
x

  (5.7) 

where 
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθθ
θθθ
θθθ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

333231

232221

131211

coscoscos
coscoscos
coscoscos

rrr
rrr
rrr

R   (5.8) 

is the rotation matrix. 

Following the same procedure, we can express x, y, z, in terms of x’, y’, z’. To 

obtain  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθθ
θθθ
θθθ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z
y
x

z
y
x

332313

322212

312111

coscoscos
coscoscos
coscoscos

'
'
'

 (5.9) 

Obviously, [ ] [ ]T1 RR =− where “T” denotes transposed transformation matrix. 

Therefore, the orthonormality is valid not only for the columns of the matrix [ ]R , but 

also for the rows of this matrix. 
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3-D gait analysis for SENSY system 

x′
z′

y′

x′z′
y′

thighθ

shankθ footθ

hipθ

kneeθ ankleθ

 

Figure 5.2 – Schematic of the system configuration with the coordinate systems. 

Initialization and initial angles 

Initialization is performed from the initial standing position, and initial angles 

are obtained from accelerometers by using them as inclinometers.  

We take 10 samples of the walking sequence at the (selected) beginning (when 

the subject is assumed to stand still), and average these samples. Hence, we obtain 

accelerometer readings from x’, y’, z’ which give cosines of the angles between the 

accelerometer axes and the vertical direction (the z axis of the fixed coordinate 

system). These angles are xθ , yθ , and zθ  (marked angle0footx, angle0footy, and 

angle0footz, for foot segment), and they are evaluated by taking the inverse cosines.  

,/acccos ',',',, gzyxzyx =θ   (5.10) 

where g is the gravity acceleration and “acc” is the signal from accelerometer. 

Observing Fig. 5.2, ,thigh yθ=θ  ,shank yθ=θ  °+θ=θ 90foot y . xθ  is defined as 

the angle between x’ and z axis, yθ  is the angle between y’ and z axis, and zθ  is the 

angle between z’ and z axis. Also, zyx θθθ ,,  correspond to 333231 ,, θθθ from Fig. 5.1. 

Creating initial rotation matrix 

Assuming that the coordinate origins of the fixed and the rod coordinate system 

coincide, the rotation matrix maps the rod coordinates (x’, y’, and z’) into the fixed 
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coordinates (x, y, and z) according to 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

'
'
'

333231

232221

131211

z
y
x

rrr
rrr
rrr

z
y
x

, where 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

rrr
rrr
rrr

R  is the rotation matrix.  

We form initial rotation matrix for each leg segment (rot0shank, rot0thigh, 

rot0foot) in the following way: 

Foot segment 

Knowing xθ , yθ , and zθ , we can readily evaluate the elements of the last row of 

the rotation matrix, i.e., we can write [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθθ
=

zyx

rrr
rrr

coscoscos
232221

131211

footR . 

The axis along the rod coincides with the y’ axis. We assume that at the initial 

position, this axis is in the Oxz plane of the fixed coordinate system. In other words, 

the 'y  axis of the foot points approximately in the direction of the x axis of the fixed 

system, i.e., in the walking direction. Hence, the projection of the 'y  axis on the y axis 

of the fixed system is zero, i.e., 022 =r . This is not entirely correct, because the foot 

(or any leg segment) is not only in Oxz plane. We calculate the angle between rod and 

Oxz plane, but we assign it to be the angle between rod and x axis, which creates an 

error. 

Further, the mapping from the 'y  axis to the x axis is simply yr θ= sin12 , so that 

at this point we have [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θθθ

θ
=

zyx

y

rr
rr

coscoscos
0

sin

2321

1311

footR , where we don’t know the 

sign of yθsin , we just know it’s yθ−± 2cos1 . This sign will be discussed later. 

The rotation matrix is orthonormal. From the orthogonality of the first and the 

second column, we have 0coscos0sin 2111 =θθ+⋅+θ yxy rr . Hence, 

y

yxr
θ

θθ
−=

sin
coscos

11 . In a similar way, from the second and the third column we 
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obtain 
y

zyr
θ

θθ
−=

sin
coscos

13 . Now, the rotation matrix becomes 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

θθθ

θ
θθ

−θ
θ

θθ
−

=

zyx

y

zy
y

y

yx

rr
coscoscos

0
sin

coscos
sin

sin
coscos

2321footR . 

Just to check, the norm of the second column is yy θ+θ 22 cossin . 

The norm of the first column is 12
31

2
21

2
11 =++ rrr . Knowing 11r  and 31r , we have 

2
31

2
1121 1 rrr −−±= . Similarly, from the norm of the third column, we obtain 

2
33

2
1323 1 rrr −−±= .  

The element 23r  maps 'z  into y. The position of the rod is such that 'z  is 

directed towards right of the sagittal plane, whereas the y axis is towards the left of 

the sagittal plane. Hence, 023 <r  and we select the lower sign.  

The element 21r  maps 'x  into y. When the axis 'z  shoots upwards, i.e., when 

033 >r , the 'x  coordinate contributes to y− . In that case, we select the lower sign for 

21r . Otherwise, we select the upper sign. 

We can further rearrange the rotation matrix. 

z
y

zyr θ−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ

θθ
−±= 2

2

23 cos
sin

coscos
1  

y

zyzyy

θ

θθ−θθ−θ
±=

sin

cossincoscossin 22222

y

zy

θ

θ−θ
±=

sin

cossin 22

y

zy

θ

θ−θ−
±=

sin

coscos1 22

. Since 1coscoscos 222 =θ+θ+θ zyx , we have 

y

x

y

x

y

xr
θ
θ±

=
θ
θ

±=
θ

θ
±=

sin
cos

sin
cos

sin
cos2

23  because always 0sin >θ y . except when the 

rod is aligned with the z axis (when 0sin =θz ). However, we have established that 
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023 <r , so that 
y

xr
θ
θ±

−=
sin
cos

23 . In a similar way we obtain 
y

zr
θ
θ±

=
sin
cos

12 . In this 

way, we obtain the transformation matrix for the foot segment:  

[ ]
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footR  (5.11)  

The product of the first and the third column is 

zx
y

z

y

x

y

zy

y

yx θθ+
θ
θ

θ
θ±

−
θ

θθ

θ

θθ
coscos

sin
cos

sin
cos

sin
coscos

sin
coscos

y

zyxzxzyx

θ

θθθ+θθθθθ
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22

sin
cossincoscoscoscoscoscos m

y

zxzx

θ

θθθθ
= 2sin

coscoscoscos m

. This product must be zero. For the arrangement 

shown in Figure 2, 0cos <θx . Hence, we choose the upper signs if 0cos <θz  and the 

lower sign otherwise, which agrees with the previous derivation. 

In a similar way, we form initial matrices for the shank and thigh segments: 

[ ]
⎥
⎥
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⎢
⎢
⎢

⎣

⎡

θθθ
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When we apply the orthonormality property as for the foot segment we get rest 

of the elements for the transformation matrix: 
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shankR , i.e., 
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 The same equations are valid for thigh segment too.  

Based on the inclinometers, we can define angles between sensor axes (x’, y’, z’) 

and the vertical (z) axis, but we do not know how the sensor is rotated around the z 

axis (one piece of information is missing). We had to make an educated guess for the 

foot that y’ is in Oxz plane, and for the shank that x’ is in the Oxz plane. Therefore, 

022 =r  in the footR transformation matrix, and 021 =r  in the shankR  and thighR  

matrixes.  

Incremental matrix rotation ( iR )  

Incremental transformation matrix is calculated for each stride, and applied 

according to the following equations: 

txx dd ⋅ω=θ , tyy dd ⋅ω=θ , tzz dd ⋅ω=θ ,  (5.13) 

which is acceptable for small rotations, where sample/1d ft = . 

Foot segment: 

 

footifoot RRR ⋅= x , and analogous for y and z axes.  
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We take signals from accelerometers ( ''' ,, zyx aaa ) and gyroscopes ( '',' , zyx ωωω ), 

which give the components of linear acceleration and angular velocity in the local 



 

 66

coordinate system. We transform the acceleration and angular velocity from local to 

global coordinate system by: 

',','foot,, zyxzyx aa ⋅= R , ',','foot,, zyxzyx ω⋅=ω R , (5.15) 

We considered only the linear accelerations of the foot segment to obtain 

estimations for stride length and foot trajectory. Based on the estimations for foot 

segment, we built the entire leg from estimated absolute angles of shank and thigh 

segments.  

After we have transformed all desired linear accelerations and angular velocities 

from local coordinate system (sensor unit/leg segment) to global (room), we apply 

drift removal from linear acceleration using polynomial approximation of the drift, as 

explained in Chapter 4. We used quadratic polynomial approximation for the x and y 

axes, and cubic polynomial for the z axis. 

Stride length estimation 
After drift removal, we perform double integration of linear accelerations (for 

all three axes) to evaluate the stride vector.  

For each stride, we define the foot movement along each axis as the difference 

between maxima and minima of the stride vector value. The total foot movement 

(displacement) is calculated as: 

22
yx slslsl += , where x and y refer to the global coordinate system from 

Fig. 5.2.  

Trajectory reconstruction 
Trajectory estimation is performed by constructing the body frame according the 

estimated foot movement and absolute angles for all three leg segments.  

We define body frame as stick diagram connecting anatomical points (toes and 

heel, heel and knee, knee and hip). In this way, we make one more approximation – 

we connect shank and foot segments at the heel point instead of defining the ankle 

point.  

By connecting these points, we define the position and orientation of the leg 

segments (foot, shank, and thigh).  
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In order to reconstruct leg segments, we use anthropometric data from the 

subject. 

Since all the sensors are approximately in the middle of each leg segment, the 

calculated positions are referred to these points, and we have to correct this in order to 

obtain positions of the anatomical points which we defined in the previous paragraph.  

For the foot segment, we define trajectory from estimated foot movement. Heel 

is defined as the point 5 cm behind the sensor placement. In order to obtain these 

coordinates in the global coordinate system of the room, we subtract the 

corresponding element of the transformation matrix for the foot segment (multiplied 

by the distance between sensor and anatomical point) from the stride vector. To obtain 

x, y, z coordinates of the heel, we use 322212 ,, rrr  elements of the transformation 

matrix, respectively. This defines the outer part of the heel point. Similarly, the toe 

point is defined as the point 20 cm in front of the heel point. In order to give foot 

reconstruction 3-D features, we also defined inner points of heel and toe points (inner 

heel point positioned 4 cm inwards from the outer heel point, and inner toe point as 

8 cm inwards from the outer toe point). For the estimation of 2-D trajectory and 

drawing 2-D stick diagram, toe and heel points are defined as the middle of their inner 

and outer points. Further, we define the knee point as the point that is placed 45 cm 

above the heel point. We multiply this distance by the corresponding elements of the 

transformation matrix for the shank segment (the same way as we did for the foot 

segment). Again we take the elements 322212 ,, rrr  of transformation matrix to define x, 

y, z coordinates, now for the knee point. The hip point is defined in similar way, but 

with the distance of 55 cm above the knee point, and multiplying this distance by the 

corresponding elements of the transformation matrix for the thigh segment. 

The final trajectory reconstruction is performed by plotting these calculated 

anatomical points. The trajectory can either be plotted in 3-D, using data from all 

three axes of the coordinate system, or in 2-D, using data from the x and z axes of the 

global coordinate system (for the sagittal plane).  

Observing leg trajectory in sagittal plane is acceptable for normal gait pattern 

and some forms of gait impairments, but prevents obtaining accurate picture for 

patients with, e.g., circumduction. 

One example of the reconstructed trajectory, compared with motion capture 

camera system is shown in Fig. 5.3.  
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Figure 5.3 – trajectory reconstruction, SENSY (red lines) compared with motion capture camera 

system (black lines). 

Angle estimation 
All segment angles are already defined by transformation matrices for their 

corresponding segments.  

Angles in sagittal plane 

Foot angle is defined as 32arccosr  from footR , more precisely this angle 

subtracted from °90 . 

Shank and thigh angles are defined as 31arcsin r−  from [ ]shankR  and [ ]thighR , 

respectively. 

Ankle angle can be defined in two ways: first, by subtracting shank and foot 

segment angles calculated as explained previously, and second, directly from 

transformation matrices for shank and foot segments. The second way is performed 

by multiplying the corresponding elements of these two matrices.  

shank,32foot,32shank,22foot,22shank,12foot,12cos rrrrrrankle ⋅+⋅+⋅=θ  (5.16) 

In order to calculate this angle, we subtract °90 from the arccos of this value 

(transformed into degrees, too).  

Knee angle can be calculated in the same way as the ankle angle, by subtracting 

thigh and shank angles, or as: 

thigh,32shank,32thigh,22shank,22thigh,12shank,12cos rrrrrrknee ⋅+⋅+⋅=θ  (5.17) 

Defining 3-D angles 

As explained in Chapter 2, movements of the limbs can be described in all three 

planes of the Cartesian coordinate system. For sensor configuration presented in this 

Chapter, these angles can be estimated in the following way: 
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1. Thigh angles  

),(2atan thigh,32thigh,12sthigh, rr −−=θ , thigh angle in sagittal plane  

),(2atan thigh,22thigh,32cthigh, rr=θ , thigh angle in coronal plane (5.18) 

),(2atan thigh,13thigh,23tthigh, rr=θ , thigh angle in transverse plane  

 

2. Shank angles  

),(atan2 shank,32shank,12sshank, rr −−=θ   

),(atan2 shank,22shank,32cshank, rr=θ  (5.19) 

),(atan2 shank,13shank,23 tshank, rr=θ   

 

3. Foot angles  

),(atan2 foot,32foot,12sfoot, rr=θ   

),(atan2 foot,22foot,32cfoot, rr −−=θ  (5.20) 

),(atan2 foot,12foot,22tfoot, rr=θ   

 

“atan2” is the function from Matlab which defines angle from ),( ππ−  while 

“atan” defines from )2/,2/( ππ−  which has limited applicability, i.e., which is 

insufficient in the general case. 

),(atan2 ab=θ , is defined as: 

⎪
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  (5.21) 

One example of the calculated 3-D angles, compared with the corresponding 

angles obtained from motion capture system as the reference are shown in Fig. 5.4. 

The comparison is not entirely correct since the markers for camera system were 

placed on anatomical landmark (hip, knee, ankle, heel and metatarsals). Although 
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sensors were carefully placed in order to minimize the alignment error (as it can be 

seen from the results for sagittal plane and beginning intervals for all 3 planes), there 

is a different kind of error which couldn’t be decreased – soft tissue artifacts. These 

problems are not present on the places where reflective markers were attached while 

the placements of sensor nodes were highly exposed to them. More accurate 

comparison would include markers placed on both ends of each sensor node, where 

they would exhibit the same kind of movements as the SENSY sensors.  
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Stride segmentation  
Stride segmentation is usually performed based on FSRs and gyroscopes from 

the foot unit. However, using FSRs for this was susceptible to errors in the analysis of 

some forms of pathological gait. Therefore, we switched to decision-making based on 

gyroscope sensors only.  

We take all three axes from gyro-sensor from the foot unit and calculate “gyro 

sum” in the following way: we eliminate DC component from each gyro axis on the 

foot, and then we summarize their absolute values which are powered on “p”, as 

shown in equation below. 

∑
=

−=
zyxi

ii gyromeangyrogyrosuma
,,

p)(  (5.22) 

 

The reason for making this kind of modification in the sum of gyro signals is 

to emphasize higher values and decrease lower values. The “p” value is selected to be 

4, which was heuristically determined after inspecting recorded data from patients 

with gait impairment. After this, this “sum” is normalized to its maxima. It is shown 

in Fig. 4 with red line, and marked as “gyrosum a” (“a” is from analogue). Then we 

apply moving average filter (smoothing 30 points) and normalize to its maxima. This 

signal (“gyrosum f”) is shown with thick blue line in Fig. 4. Based on this filtered 

signal we make its binary form (“gyrosum b”) by applying heuristically determined 

threshold (we set this value to 0.002 but it could be changeable). “gyrosum b” is set to 

0 when the foot is moving, and set to 1 when the movement is below the threshold 

value. This signal is shown with thin black line in Fig. 5.5. After this, we search for 

the moment when the foot movement (“gyrosum f”) is minimal within every interval 

where the “gyrosum b” is positive. These moments are shown with cyan square 

markers in Fig. 5.5. FSRs signals are also shown in Fig. 6. FSRs are drawn with green 

line, providing reference for recognition of gait phases (positive – stance phase, zero – 

swing phase).  
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Figure 5.5 – Stride segmentation method. 

These cyan square markers represent moments within stride where the foot is 

still, and these moments are used for stride segmentation and resetting the calculated 

stride length after each stride. They are also used for fitting the polynomial function in 

order to eliminate drift from angles, as it will be described in the following section.  

Eliminating drifts from angles 
This correction was needed for longer files recorded at the Rehabilitation clinic, 

when the calibration was not appropriate. Additional drift minimization was 

performed for absolute angles only. 

Panels in Fig. 5.6 show, from top to bottom, segment angles for the foot, shank, 

and thigh) and vertical ground reaction force. Red line represents the original signal, 

and the green line shows the corrected signal after drift removal. 

Foot angles are corrected by fitting the polynomial through the points marked as 

the moments inside the stance interval where the inertial sensors on the foot register 

the minimal movement (black square markers in Fig. 5.6).  
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Figure 5.6 – Drift elimination for segment angles. Red line represents the original signal, and the green 

line shows the corrected signal. Black square markers show moments in the stance phase when the foot 

has minimal movements.  

Black square markers show the selected moment inside the stance interval 

where the inertial sensors on the foot register the minimal movement. These moments 

are used for fitting the polynomial through them and removal of the baseline from the 

foot angle. 

Drift removal from the shank angle is performed by polynomial fitting through 

the points between local maxima and minima for each stride (red square markers). 

Regarding the fitting through the thigh angles, drift removal has one additional step in 

comparison to the shank segment. The reason for this is that the thigh segment is very 

susceptible to soft tissue artifacts which impair the quality of angle estimation. 

Therefore, the first step in drift removal is fitting through the red square markers, 

which mark the same moments as black markers for the foot segment. This step is 

presented with yellow line in Fig. 5.6. After this, we perform fitting through the 

yellow square markers, using the same method as we did for the shank angle. 
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However, this kind of drift removal can damage the original baseline. This is 

prevented by calculating the baseline from the second stride (the reference baseline) 

from the beginning of the sequence, and shifting the estimated angles after the drift 

removal to this reference baseline. We selected the second stride as the reference 

baseline because we needed the stride that is both representative in its movement 

magnitudes and closer to the beginning of the recording i.e., the still period so that the 

drift would not be very much expressed. Since the first stride usually has smaller 

amplitudes i.e., smaller movements, flexions and extensions (as shown in Fig. 5.6), its 

baseline can be significantly different from the other baselines which is why it was 

discarded as the candidate for the “reference baseline” and the following stride was 

selected. 

Discussion and Conclusion 
There are several limitations that need to be considered. First, current placement 

of the sensors (lateral side of each leg segment) is extremely exposed to soft tissue 

artifacts, which makes segment reconstruction more difficult. It especially creates 

problems for reconstruction of the movement in coronal plane, which can be 

important for some forms of pathological gait. This agrees with Stagni et al.(2005) 

where it was showed that the biggest error provoked by soft tissue artifact comes from 

the movements performed in coronal plane i.e., for medio-lateral movements. One 

solution is to move sensors placement to the frontal side of leg segments, which is less 

susceptible to soft tissue artifacts then our original position. However, this was not 

applied for SENSY for two reasons: the first one is that most of our clinical studies 

included other types of sensors (EMG recordings) which had to be positioned in the 

frontal part and there was no place left for sensor nodes, and  the second reason is that 

validation of angle estimation for pathological gait was performed with 

electrogoniometers that needed to be placed on lateral side (except for the foot 

segment which could be placed medially but due to diversity of patients footwear we 

couldn’t get really comparable results and real foot angles). Since the accuracy of 

angles in coronal plane is not satisfactory, we can not provide accurate information 

about the excursions for circumduction movements.  

Furthermore, current SENSY system does not have information about the 

azimuth which is needed for the estimation about the initial foot opening. Without that 
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there is a problem with trajectory reconstruction in 3-D which is artificially solved by 

entering approximate information in the program. This problem can be solved by 

using magnetometers. This may help reconstructing positions of two legs (though it 

would not be sufficient without using additional information, such as controlling the 

distance between the hips). However, the problem with magnetometers is that they are 

sensitive to the presence of ferromagnetic materials and metals and need to be 

considered with care and in controlled environment. These applications are not really 

suitable for clinical and home environment since it couldn’t be requested from 

patients to take so much care about the surrounding area. Furthermore, patients often 

have metal canes or walkarounds that could hinder sensor’s data. 

There is another limitation regarding the system hardware: if the sensors are not 

properly calibrated, the system is prone to higher errors. It means either to have 

reliable and more frequent calibration or better sensors. We planned to switch to 

digital inertial sensors of the new generation which would provide better signal 

quality, both its accuracy and resolution. However, this was not done.  

Drift removal was performed for signals from foot accelerometers and already 

calculated angles. However, it was not applied for trajectory estimation. This is not 

the problem if the sensors are well calibrated and there is a sequence in the beginning 

of the recorded file where the subject is standing still. These moments should be taken 

for estimation of initial conditions. Based on the information from our collaborators in 

two clinics, they prefer to observe angles and trajectory reconstruction is interesting 

for them only for illustrating if there is some kind of gait disturbance and the measure 

of that disturbance they like to read from estimated angles which is why we didn’t 

correct the 3-D trajectory estimation. 

There were two main protocols tested with SENSY: 1) 10 m long straight 

pathway for gait assessment of patients with stroke and 2) at least 50 m long 

complicated pathway with turns and turn overs for patients with Parkinson’s disease. 

Inside the SENSY algorithm, there is a block for performing integration reset after 

each stride (in the middle of the stance phase, when the foot is still). This block can be 

activated or deactivated, depending on the application we want to use. For straight-

line pathway, it was shown that 3-D trajectory reconstruction works better if this reset 

is performed. However, for application in PD patients this reset disables correct 
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information about the turns and reconstruction of their complicated pathway which is 

crucial for interpreting what caused patient’s disturbances and freezing episodes. 

Besides these hardware modifications, some future work if we decide to get 

back to this could include additional drift removal of gyro data, for example by 

comparing average values of absolute angles obtained by gyroscopes and 

accelerometers (used as inclinometers) or filtering. 
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6. Processing of signals from rigid 

double pendulum: comparison of 

angle estimation methods  

In this chapter, we compare the angle estimation methods described in 

chapters 3, 4, and 5. Those methods were tested and validated in real working 

conditions, sensors were mounted on subjects and tested for different gait speeds. 

However, walking can never be completely in 2-D and there are always some segment 

rotations and skin and tissue motion artifacts. Precise estimation of segment and joint 

angles is always disturbed by these artifacts, and so is the validation of those methods.  

Therefore, we performed testing and comparison of these methods for angle 

estimation of a double pendulum composed of two rigid segments. The pendulum has 

a rotary joint to a fixed support and another rotary joint connecting the two segments 

(Figure 6.1). This configuration allows pendulum movements to be considered analog 

to a leg model in 2-D. Such double rigid pendulum allowed movements in one plane 

(that would correspond to the sagittal plane for human movements) without the risk of 

having crosstalk between the axes. 

In this chapter, we additionally point to some of the problems of the numerical 

analysis applied on data from inertial sensors, i.e., integration vs. derivation, by 

comparing angular accelerations (α), angular velocities (ω), and angles (θ) obtained 

from each other by calculus. Namely, errors in measurement or signal noise, however 

small, are accumulated from point to point. This leads to drift, or an ever-increasing 

difference between where the system thinks it is located, and the actual location. 
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Experiment setup 
Inertial sensors were carefully placed along the pendulum segments, connected 

by mechanical joints equipped with optical incremental rotary encoders, as illustrated 

in Fig. 6.1. The upper segment was attached to a fixed base by its upper joint 

(Encoder 1). The lower segment was attached to the upper segment by their common 

joint (Encoder 2). Both pendulum segments were able to move freely in 2-D. The 

mechanical properties, size, and weights of encoders and inertial sensors did not 

hinder the pendulum movements. 

Three sensor units with inertial sensors were placed along the upper segment, 

and two sensor units on the lower segment. The first (highest) sensor unit was placed 

especially carefully so that its accelerometer position matches with the encoder’s 

center of rotation. Round black markers show the actual location of accelerometer 

sensors within sensor unit, while square black markers show the location of 

gyroscopes. The axes orientations are as shown in Fig. 6.1. Signals measured from 

inertial sensors i.e., accelerometers and gyroscopes are marked as aij and gij, where i 

marks the pendulum segment (1-upper segment, 2-lower segment), and j marks the 

order of the sensor unit, from top to bottom. Joint angles are marked by iθ  and 

segment angles by iφ (with respect to vertical). 
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Figure 6.1– Double rigid pendulum with encoders placed as joints and inertial sensors placed along 

segments. Accelerometer positions in sensor units are denoted by round markers and gyroscope 

positions by square markers.  

The following recording protocol was performed with the double pendulum: 

Static phase with transients: 

1. pendulum was vertical and still (neutral position),  

2. pendulum’s lower segment was lifted to horizontal position and 

remained still, 

3. pendulum’s upper segment was lifted so that the lower segment returns 

to neutral position and it was held still, 

Oscillating phase: 

4. pendulum was released to swing. 

These phases can be seen from the angles measured by the encoders as shown in 

Fig. 6.2. 
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Figure 6.2 – Joint angles based on encoders, complete recorded sequence.  



 

 82

0 20 40 60 80 100 120 140 160 180 200

-1

0

1

θ 1 [
ra

d]

 

0 20 40 60 80 100 120 140 160 180 200

-1

0

1

θ 2 [
ra

d]

t [s]  

0 20 40 60 80 100 120 140 160 180 200

-1

0

1

t [s]

φ 2 [
ra

d]

 

 

 

Figure 6.3 – Joint and segment angles based on encoders, complete recorded sequence.  

The segment angle for the lower segment is obtained by adding the angles 

obtained from encoders 1 and 2.  

Results for the upper segment 

Basic methods for angle estimation 

The first angle (the angle of the first segment with respect to the vertical 

direction, θ1) was evaluated by the inclinometer based on acceleration components of 

the first IMU (a11) and by integrating the gyroscope (g11), starting from 2 s. The 

results are compared with the encoder, which is assumed to be the reference. 
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Figure 6.4 – Angle of the upper segment obtained from encoder, inclinometer, and integrated 

gyroscope. 

A slow drift can be seen in the integrated signal over the whole recorded interval, as 

shown in Fig. 6.5. 
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Figure 6.5 - Angle of the upper segment obtained from encoder, inclinometer, and integrated gyroscope 

(exhibiting drift), complete recorded sequence. 

The angle labeled “inclinometer” is obtained by using the accelerometers as 

inclinometers by applying “atan2”, as introduced in chapter 4. This is a good 
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assumption when the pendulum is still, but the results are very inaccurate when the 

pendulum is in motion.  

The upper panel of Fig. 6.6 shows the differences between the angle from 

encoder (reference) and the angle obtained from accelerometer which is used as an 

inclinometer. The differences between integrated gyroscope data and the angle from 

encoder can be seen in Fig. 6.6 (lower panel). For IMU#1, the position of 

accelerometer a11 coincides with rotation axis of the upper segment. For this reason, 

a11 provides good results when used as inclinometer, and neither centripetal nor 

tangential accelerations hinder its angles estimation. This accelerometer would be 

analog to accelerometer positioned on the ankle, for gait analysis.  
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Figure 6.6 – Differences in the angles estimated by inclinometer and integrated gyroscope, compared to 

the encoder angle. 

Angular velocity and angular acceleration are shown in Fig. 6.7 and 6.8, 

obtained in different ways (directly from sensors or by differentiation, as appropriate): 
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Figure 6.7 – Angular velocity obtained as derivatives of encoder and inclinometer angle, and directly 

from gyroscope. 
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Figure 6.8 – Angular acceleration obtained as double derivatives of encoder and inclinometer angle, 

and as derivative from gyroscope. 

The differentiation 1produces a lot of noise in all cases, so that filtering is 

required to obtain meaningful results2. Clearly, the worst results are obtained by 

                                                 
1 The input signals are digital. Each signal is a train of samples, at a sampling rate of 100 Hz. Each 

signal is also quantized. The differentiation is performed here by taking first-order differences. When 
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double differentiation of the angle estimated by inclinometer. The reason for this is 

the quantization of the signals. Double differentiation of encoder angle also provides 

useless results. 

As explained in chapter 2, the integration introduces drift. Comparison of drifts 

after integration obtained from the three gyroscopes located on the first segment is 

shown in Fig. 6.9 and 6.10. 
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Figure 6.9 – Segment angles obtained by integrating signals from gyroscopes positioned along the 

segment, sequence at the beginning of recorded file (transition state) 

                                                                                                                                            
the signal is slowly varying, we subtract almost equal numbers. Hence, the quantization introduces 

large errors in the differences.  
2 However, the filtering cannot make a total improvement of the results. To reduce the additive noise, 

the filtering is low-pass, but it not only decreases the rapidly-varying noise, but also distorts even the 

actual signal (changes the form and introduces a delay). 



 

 87

165 170 175 180 185 190 195
-0.4

-0.3

-0.2

-0.1

0

0.1

t [s]

A
ng

le
 ( φ

1) 
[r

ad
]

 

 
int(g11) int(g12) int(g13)

 

Figure 6.10 – Segment angles obtained by integrating signals from gyroscopes positioned along the 

segment, sequence at the end of recorded file. Different sensors exhibit different amount of drift. 

Engle estimation based on accelerometer pairs  

Using pairs of accelerometers, we obtained angular acceleration of the upper 

segment, as shown in Fig. 6.11. Angular acceleration is also calculated by 

differentiation of gyroscope signal, which exhibits noise. 
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Figure 6.11 – Angular acceleration obtained from different accelerometer pairs from upper segment, 

and by differentiation of gyroscope signal. 
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As shown in Fig. 6.11, differentiation provides worse results for small values 

(static phase) than for oscillating phase where the signals are have larger magnitudes. 

Results from the oscillating phase show excellent agreement with the reference 

angular accelerations, while results in the static phase exhibit large noise. 

By integrating the angular acceleration obtained from the accelerometers, the 

results are obtained for the angular velocity and angle, exhibiting a large drift 

(Fig. 6.12 and 6.13). 
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Figure 6.12 – Angular velocity obtained by integrating from different accelerometer pairs from upper 

segment, and directly from gyroscope signal. Different accelerometer combinations exhibit different 

amount of drift. 
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Figure 6.13 – Angles of the upper segment obtained by double integration of different accelerometer 

pairs and by integration of gyroscope signal. Different accelerometer combinations exhibit different 

amount of drift. 

Willemsen method 

The angle obtained by the Willemsen approach is shown in Fig. 6.14. 
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Figure 6.14 – Angle obtained by Willemsen method from accelerometers a12 and a13, compared to 

reference encoder angle. 
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The Willemsen method provides estimation of the joint angles, but it can be 

applied to evaluate the absolute angle of the upper segment since this segment is 

attached to a stationary base (so that the absolute angle equals the joint angle).  

By differentiating the angle, the angular velocity and angular acceleration are 

obtained, as shown in Fig. 6.15 and 6.16. 
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Figure 6.15 – Angular velocity obtained by differentiating the angles obtained by Willemsen method, 

compared to gyroscope signal (reference). 
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Figure 6.16 – Angular acceleration obtained by double differentiating the angles obtained by 

Willemsen method, compared to angular acceleration directly from a12 and a13 (reference).  

Generally, Willemsen’s results for the angle are very noisy due to subtractions, 

and the subsequent differentiations make the results useless. Results of a 

differentiation could be improved by applying some more sophisticated form of 

numerical differentiation (e.g., interpolation by a polynomial and differentiation of the 

polynomial) or by applying low pass filtering. However, the filtering would suppress 

the noise, but distort the signals. 

“Smart” filtering method (integration in frequency domain)  

The following figures show results obtained by the “smart” filtering algorithm 

(SFA) described in chapter 3. Anchoring to the encoder results is at 65 s, where the 

signal is nearly periodic. This anchoring is necessary since filtering distorts the dc 

value and we have to anchor results of SFA to dc value of the angle, as explained in 

Chapter 3. 
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Figure 6.17 – Angle obtained by smart filtering, applied on accelerometer pair, compared to encoder 

angle (black line), during the static sequence from the beginning of the recorded sequence.  
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Figure 6.18 – Angle obtained by smart filtering from accelerometer pair, compared to encoder angle 

(black line), ending sequence from the recorded file.  

As discussed in chapter 3, where we introduced the SF method, this method is 

only applicable to movements that are quasi-periodic or periodic. Therefore, angles 

estimated by this method follow the reference angle in shape and amplitude for 

pendulum oscillations, while for transient state they show significant errors compared 

to encoder angles. 
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Nonlinear optimization for drift removal  

The optimization method, presented in chapter 4, was performed in windows of 

20 s, with anchoring to the encoder reading at 10 s intervals, up to 70 s. Shown below 

is the squared angular velocity obtained from the accelerometers. The reading should 

be zero in the time intervals when the segment is still. This is true in the calibration 

intervals, but not when the pendulum is on the chair. The most probable cause is 

nonlinearities of the accelerometers. 
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Figure 6.19 – Quadratic angular velocity obtained from y axis of accelerometer pair (red line), 

preconditioned (all negative values are clipped with 5pt moving average filter), and directly from 

gyroscope 

The negative quadratic angular velocity phenomenon can be explained by 

mechanical vibrations (but we assume that the segment is rigid), or by slightly 

unsynchronized sensor sampling, etc. The biggest error is synchronized with 

pendulum transitions between different positions, around 25 s and 52 s. 

For the time interval 0-20 s, the input data for optimization is shown in 

Figure 6.20. 
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Figure 6.20 – Input data for optimization, linear accelerations, angular acceleration, and quadratic 

angular velocity obtained from accelerometers. Upper panel: sequence at the beginning of file (static 

phase), lower panel: sequence from the oscillating phase 

The results obtained from the optimization are shown in Fig. 6.21.  
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Figure 6.21 – Quadratic angular velocity: directly from the subtraction of x axes of the accelerometer 

pair (blue line), after optimization (red line) 
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Figure 6.22 – Angular velocity after optimization (red line), compared to the gyroscope signal (blue 

line). 
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Figure 6.23 – Angle after optimization, compared to the angle obtained by inclinometer and from 

encoder. 

For the whole sequence 0-80 s, the reconstructed angle is shown below: 
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Figure 6.24 – Angle after optimization (red line), compared to the angle from encoder (blue line). 

The oscillations in the interval when the pendulum is in static phase, come from 

accelerometer nonlinearities3. The problem is because the accelerometers readings 

indicate that the pendulum is in motion, whereas it is actually completely still. 

Further fine tuning of various parameters used in the optimization could 

improve the reconstruction. 

Results for the lower segment 

Basic angle estimation methods 

The second angle (the angle of the second segment with respect to the vertical 

direction) was evaluated by integrating the gyroscopes (starting from 2 s). The results 

are compared with the encoders, which are assumed to be the reference. 

                                                 
3 The accelerometers are calibrated from the recorded sequence at 10 s and at 50 s, when the pendulum 

i still at two positions. The resulting oscillations at these two positions are relatively small, as expected. 

However, the oscillations at the intermediate still position (30-40 s) are much larger. If the 

accelerometers were totally linear, the two-point calibration would be sufficient for all positions. 

However, due to the nonlinearities, the accelerometers are not accurately calibrated in-between the 

calibration points. Due to different characteristics of the two accelerometers in a pair, the resulting 

error is much larger away from the calibration points, as is obvious at the intermediate still position. 
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Figure 6.25 – Angle of the lower segment, obtained directly from encoders (red line) and by integrating 

g21 and g22 (green and blue line). 

Angle estimation from accelerometer pairs  

Using pairs of accelerometers, the following angular acceleration is obtained: 
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Figure 6.26 – Angular acceleration of the lower segment, measured by accelerometer pair a21 and a22, 

and by differentiation of gyroscope signal g21. 

By integrating the angular acceleration obtained from the accelerometers, the 

following results are obtained for the angular velocity and angle, again exhibiting a 

large drift: 
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Figure 6.27 – Angular velocity obtained from accelerometer pair, from differentiation of encoder 

signal, and gyroscope (reference). 
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Figure 6.28 – Angle of the lower segment obtained by double integration of angular acceleration 

obtained from accelerometer pair, and by integrating gyroscope signal. 

Willemsen method  

The following figure shows the angle obtained by the Willemsen approach: 
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Figure 6.29 – Joint angle (angle between upper and lower pendulum segment), obtained from 

accelerometer pairs from upper and lower segment by Willemsen method, compared to encoder angle 

(reference). 

Smart filtering (integration in frequency domain) 

The following figures show results obtained by the filtfilt algorithm. Anchoring 

to encoder results is at 65 s, as explained for the upper segment. 
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Figure 6.30 – Angle of the lower segment obtained by smart filtering (red line) and from encoders 

(black line). Upper panel: sequence from the beginning of file – transition state. Lower panel: zoomed 

sequence from the middle of the signal (stationary state). 

Nonlinear optimization for drift removal 

Shown below is the squared angular velocity obtained from the accelerometers. 

Note that it is one order of magnitude larger than for the first segment. 
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Figure 6.31 – Quadratic angular velocity from directly from accelerometer pairs, from preconditioned 

accelerometer pairs, and from gyroscope signal. 

The reconstructed angle of the second segment is shown in Fig. 6.32. 
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Figure 6.32 – Angle of the lower segment obtained from accelerometer pair by optimization method, 

and directly from encoder (reference). 
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Conclusion 
In this chapter, we compared all angle estimation methods investigated in 

previous chapters, and demonstrated their advantages, faults, and limitations on a 

pendulum model. 

This study confirmed our previous observations and recommendations from 

literature that accelerometers can be reliably used as an inclinometer only for static 

measurements or very slow ambulation. Angle estimation in the still periods showed 

the closest match to reference angles by using accelerometers as inclinometers, while 

for the oscillating sequence, it gave the worst results (if we neglect double integration 

of accelerometers leading to enormous drift). This founding implies that, although the 

inclinometer can be successfully implemented during anchoring intervals for zero-

velocity updates and calculations for the foot segment, it can lead to errors if it is 

applied for shank and thigh segments. For patients who ambulate very slowly, this 

may be acceptable, but those gait velocities should be less than 0.2 m/s.  

Smart filtering method based on accelerometer pairs, as expected from the 

results in chapter 3, can successfully provide angle estimation for movements with 

repetitive nature, such as gait. However, for patients with severe gait deformities 

whose gait cannot be considered cyclic, this method distorts the signal and provides 

false angle values. 

Finally, the results of the optimization method, as expected from the results in 

chapter 4, showed that this method can provide reliable angle estimation for all gait 

types and velocities. However, the disadvantage of the optimization method is the 

requirement to know the distances from the sensors to the centers of joints. These 

values do not need to be very precise, but clinicians are required to take the measuring 

tape and measure the positions, which slightly prolongs the assessment process.  

Integrating signals from gyroscopes provides the best results for angle 

estimations, comparing all investigated techniques during oscillating period, if there 

can be anchoring intervals which could be used for integration reset. As explained in 

chapter 5, this can easily be applied for the foot segment, but not for shank and thigh. 

Gyroscope drift can be minimized by applying polynomial fitting, as explained in 

chapter 5, but in some cases there is a risk of distorting the signal. Furthermore, 

integration of angular velocities obtained from different sensors placed on same 
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segments provided different results. This is an important issue which proved that each 

sensor comprises different noise which results in different drift after integration.  

Regarding calculus problems, while transforming one variable to another by 

numerical integration or differentiation, the numerical differentiation turned out to be 

very noisy due to quantization errors, and thus almost useless. The integration, 

naturally, suffers from drift. Hence, the drift removal techniques are essential to 

obtain reliable results for angles, in particular if the observation interval is longer than 

several seconds. 
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7. Clinical Applications∗ 

Clinical gait assessment: no-tech, low-tech and high-

tech methods 
Clinical gait assessment is being performed in many ways, from patient’s self-

report measures and visual observation by therapist (no-tech assessment) to 

performance-based set of multiple tasks (either no-tech by filling up questionnaires 

based on visual observation, or low-tech by measuring distance and/or timing). High-

tech assessments involve kinematic and kinetic analysis for assessment of balance and 

gait disorder. This kind on gait assessment can be performed by systems that are 

integrated in the clinical gait laboratory or by wearable systems which allow gait 

assessment in any environment and unlimited space. 

In self-report measures, respondent rank the presence or absence of a problem 

with walking or a walking-related task, with rankings ranging from no difficulty in 

                                                 
∗ This chapter is based on following publications: 

Popović M.B, Djurić-Jovičić M., Petrović I., Radovanović S., Kostić V., “A simple method to assess 

freezing of gait in Parkinson's disease patients”, Braz J Med Biol Res, September 2010, Volume 43(9), 

pp. 883-889. 

Djurić-Jovičić M., Jovičić N.S., Milovanovic I., Radovanović S., Kresojevic N., Popović M.B, 

“Classification of Walking Patterns in Parkinson’s Disease Patients Based on Inertial Sensor Data”, 

Proceedings from the 10th Symposium on Neural network Applications in Electrical Engineering, 

Neurel 2010, 23-25 September, pp. 3-6, Belgrade, Serbia. 

Kojović J., Djurić-Jovičić M., Došen S., Popović M.B., Popović D.B., “Sensor-driven four-channel 

stimulation of paretic leg: Functional electrical walking therapy”, Journal of Neuroscience Methods, 

June 2009, Volume 181(1), pp. 100-105. 
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task performance (independent), to unable to perform the task wither with or without 

human assistance (dependent) (Alexander et al., 2000). 

The performance-based measures include sets of functional gait and balance 

tasks (which includes gait-related tasks such as turning while standing) in order to 

detect and quantify abnormalities. These tasks are either timed or scored semi-

quantitatively, usually based upon whether a subject is able to perform the task, and if 

able, how normal or abnormal the performance was.  

Typical gait parameter that is being used for gait assessment is gait speed, 

measured as part of a timed short distance, measuring the usual and maximal gait 

speed, within 6-minute walk test, or long-distance corridor walk (Alexander et al., 

1996). 

Another assessment approach is set of multiple tasks. Dynamic Gait Index 

includes evaluating alterations in response to changing tasks demands, including gait 

speed, head turns, turning, clearing an obstacle, stair climbing, walking backwards, 

with eyes closed or on a narrowed support (Shunway-Cook et al., 2004). The Emory 

Functional Ambulation Profile (EFAP) measures the time to walk under five 

environmental circumstances, with and without the use of an assistive device in stroke 

patients: 1) 5-m walk on hard floor, 2) 5-m walk on short pile carpeted floor, 3) time 

up and go test, 4) step over a brick and turn around a trash can, 5) walk up four steps, 

turn around and return (Wolf et al., 1999). The Berg Balance scale evaluates static 

and dynamic balance abilities though 14 simple balance tasks ranging from standing 

up from sitting down position, to standing on one foot. The degree of success in 

achieving each task is given a score of zero (unable) to four (independent), and the 

final measure is the sum of all of the scores (Berg et al., 1989).  The Brunnstrom scale 

separates the recovery process into six stages, from stage one (no movements of the 

affected limb), to stage six (healthy like movement) (Brunnstrom, 1970). The Fugl-

Meyer (FM) sensorimotor test comprises groups of items measuring movement, 

coordination, reflexes, sensation and other motor behaviors (Fugl-Meyer et al., 1975). 

The FM test for lower extremities allocates 34 points for maximum performance. 

Functional Ambulation Classification (FAC) uses a five-point scale to rate the extent 

of human assistance (stand-by, intermittent touch, and continuous support) required to 

walk varying surfaces (level, nonlevel, stairs, and inclines) while using an assistive 

device if necessary (Holden et al., 1984). Performance-Oriented Mobility Assessment, 
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also known as the Tinetti Balance and Gait Scale, in one of the earliest and most 

widely used methods to assess balance, gait, and fall risk in older adults. This test 

includes an evaluation of balance under perturbed conditions (such as while rising 

from a chair, after a nudge, with eyes closed, and while turning) as well as an 

evaluation of gait characteristics (such as gait initiation, step height, step length, 

continuity and symmetry, trunk sway, and path deviation) (Tinetti et al., 1988). Timed 

Up and Go Test (TUG) is a measure of time taken to stand u from a chair with 

armrests, walk 3 m, turn, walk back to the chair and sit down. Difficulty and/or 

unsteadiness in TUG performance is recognized as an important part of fall risk 

assessment (American Geriatrics Society, 2001). 

Dual task performance has been linked to an increased risk of falls based on 

walking performance while performing a simultaneous cognitive (dual) task.  

However, changes due to therapy or rehabilitation are often slow and 

susceptible to subjective evaluation of the clinician. Besides that, there are also issues 

with subjectivity which is based on the observer’s experience and individual bias, the 

restriction to a specific pathology, and low sensitivity to changes (Konig et al., 1997, 

Flansbjer et al., 2005). Hence, in order to create real clinical image of the patient, 

assessment of the therapy effects require implementation of hi-tech measurements 

which offer objective evaluation of the results and which enhance the clinician’s 

ability to assess the overall outcome.  

Among measuring techniques used for rehabilitation outcome evaluation, gait 

analysis is well standardized and currently most used (Langhorne et al., 2011). A 

clinical gait laboratory usually record patients walking with motion capture system 

(based on stereophotogrammetry) which tracks patient movements (usually used in 

parallel with standard video system), force plates that measure ground reaction force 

(described in chapter 1). Electromyography systems are also often used to record 

muscle activity while walking. Some other gait analysis systems that could be found 

in clinical settings are treadmills with integrated force plates, or force-sensitive 

walking paths (such as GaitRite, described in chapter 1). However, all these 

measuring tools are accessible only in a few specialized laboratories, as they are 

complex, expensive, require a lot of room space, and they can hinder patient’s usual 

gait pattern. 
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Another approach is to use wearable sensor system and record patient’s gait in 

any environment (in clinical settings, outdoors, at home). This provides more precise 

assessment of patient’s gait patterns because the space is not limited and there is 

enough time for patient to “forget” he is being recoded. Flexible shoe insoles with 

integrated force sensors are frequently used to evaluate load distribution and temporal 

gait characteristics (such as Stride analyzer, Pedar, TecScan).  They provide lower 

resolution and precision than force plates but allow unlimited number of steps to be 

made, which is their main advantage. Besides force distribution, wearable systems can 

comprise inertial sensors which can record gait kinematics (accelerations and 

velocities) and after signal processing, position and orientation estimations resulting 

in joint angle estimations, the most significant parameter for many clinical 

assessments (Perry et al., 1992). Although these systems have been developed over 

the last decade and they are increasing their accuracy and decreasing their prices, they 

are still not standardized as clinical assessment tool. IMU-based systems have been 

proven through numerous research publications (Aminian et al., 2004; Ferrari et al., 

2010; Schwesig et al., 2011, van den Noort et al., 2012) to be valuable clinical 

assessment tool, yet,  they are still considered to be more adequate for researchers that 

for clinical staff (physicians and therapist). 

In this thesis, we proposed an ambulatory system based on kinematic sensors 

attached on the lower limbs in order to overcome the limitations of the previously 

mentioned techniques. The main features of the measurement device were to be 

portable and wireless, easy to use, accurate, robust, and capable of continuously 

recording data in long-term without hindrance to subject’s gait pattern. Moreover, 

new algorithms were proposed to accurately measure joints and segments angles in 

the sagittal plane. These data were then used to develop a gait analysis system 

providing spatio-temporal parameters, kinematic curves, and skeleton visualization. 

In this chapter, we applied the gait analysis methods, proposed in chapter 5, in 

real clinical applications. System outputs were combined to provide clinicians with an 

objective image about patient’s state and recovery process. 

 



 

 110

Gait analysis for patients with Parkinson’s disease  
Postural and gait disorders are the most disabling cardinal signs found in people 

with Parkinson's disease (PD). These patients have been reported to have postural 

impairments including a reduction of limits of stability, impaired postural adjustment, 

and poor responses to perturbation. Gait disturbance includes slow speed, shorter step 

length, and increased variability of step time. Some patients also suffer from episodic 

features such as freezing of gait (FOG). Gait and balance deficits predispose people 

with PD to falls. In a 20-year follow-up study, it has been reported that 87% of 

individuals with PD experienced one or more falls and 35% sustained injuries 

resulting from falls during walking. Falls can lead to physical injuries and 

psychological traumas such as fear of falling. This results in functional mobility 

restriction, loss of independence, social isolation, decrease in quality of life with 

increased risk of institutionalization, and increased mortality rate. Therefore, the 

objective gait assessment and monitoring progress of the disease can give clinicians 

important information about changes in the gait pattern and potential gait deviations, 

especially for patients who exhibit FOG episodes and concomitant falls.  

In this study, we used the proposed system (SENSY) for assessment of gait 

pattern for patients with PD. We used SENSY gait parameters analysis to provide 

follow-up of the treatments effects or progress of the disease. In people with 

Parkinson’s disease, the relationship between stride length and stride frequency 

exhibits abnormalities (Morris et al., 1998). In some cases, medications can stabilize a 

person’s gait by increasing the stride length and/or decreasing stride-to-stride 

variability. The benefit of this treatment can be quantified by monitoring the stride 

characteristic before and after treatment. Also, this kind of analysis can provide a 

warning about changed gait pattern and possibility of subsequent falls. As an upgrade 

of this application, we also developed a method for identification of freezing episodes 

for patients with PD, which is a special focus of the study.  

Freezing of gait phenomenon 

About one third of Parkinson’s disease patients experience sudden, transient 

block of movement performance, the phenomenon known as freezing of gait (FOG) 

(Giladi et al., 1992). A FOG episode is defined as the state when the patient is not 

responding within 1 s to the instruction to walk, or if it appears as he/she is trying 
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unsuccessfully to initiate or continue locomotion, as well as break in gait performance 

for no apparent reason. These episodes typically last from few seconds to 30 s., but in 

more cases they may last even for several minutes, and they are often resistant to 

therapy (Giladi et al., 2001). 

FOG can be manifested in several ways. Patients can come to a complete motor 

blocks (akinesia), which patients often describe as a feeling of the feet being glued to 

the floor. This “glued feet” feeling can also be accompanied by the trembling in place, 

i.e., the alternated tremor of the legs (knees) usually at a frequency 3-8 Hz (Moore et 

al., 2008; Hausdorf et al., 2003). Another FOG feature is walking with very short 

steps, which is a consequence of increase of cadence with a decrease in step length. 

Besides short steps, patients can also experience shuffling forward, defined as very 

short shuffling steps, several mm to several cm long, or walking in place where the 

foot or toe does not leave the ground or only barely clears the support surface 

(Hausdorf et al., 2003).  

Investigators commonly distinguish five typical provocative factors for FOG 

scenarios: start hesitation, turn hesitation, hesitation in tight quarters (FOG through 

narrow space), destination hesitation, and open-space hesitation (Schafsma et al., 

2003). Turns and narrow spaces are especially important for provoking FOG 

episodes. During turns, gait control mechanisms might produce different motor 

programs to the axial (inner) and pivotal (outer) leg, and this mismatch challenges 

coordination (Plotnik et al., 2012). Step length reduction of the inner leg challenges 

step scaling control and may trigger the sequence effect. On the other hand, walking 

through narrow spaces may lead to slowness of gait and step length reduction while 

choosing a leading leg for passing through the passage (attention and coordination 

demanding) (Plotnik et al., 2012). 

Circumstances that can cause FOG episodes include approaching doorways, 

dual-tasking, distractions, crowded places, and being under mental pressure or stress. 

Furthermore, FOG can be provoked by emotions, excitement, auditory cueing at the 

proper pace, targets for stepping, and climbing stairs. 

Patients with FOG exhibit increased variability of stride time and length, 

disordered bilateral coordination, reduction of stride amplitude, and increased cadence 

to abnormally high rates during a turn compared to PD without FOG and to healthy 

subjects (Hausdorf et al., 2003; Plotnik et al., 2008; Chee et al., 2009).  
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FOG abnormalities are more pronounced in patients in the off state of the 

disease (i.e., without dopamine therapy).  

Episodic abnormalities of gait accompanying FOGs are: incremental decrease in 

stride length, highly reduced joint angles ranges (hip, knee, and ankle), disordered 

temporal control of gait cycles, and high-frequency alternate trembling-like leg 

movements with power peaks in frequency bands of 3-8 Hz*. Since FOG can be 

asymmetric and affect one side or be provoked more by turning on one side, 

movements of both legs should be assessed in order to obtain an objective image 

about patient’s gait pattern and appearance and frequency of the FOG episodes (Nutt 

et al, 2011). 

Besides being very uncomfortable, and hindering patient’s daily activities, FOG 

represents a common cause of falls and consequent injuries in PD, which stresses the 

importance of clinical assessment of FOG (Moore et al., 2008). Nowadays, the 

assessment has been mostly based on subjective patient reports and questionnaires. 

Furthermore, FOG episodes are difficult to be elicited in a routine clinical 

examination, requiring performance of complex walking patterns with turns and 

obstacles. Still, there is no objective method to identify the FOG phenomenon or the 

type, duration, and intensity of disorder episodes.  
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Gait assessment: Recognizing gait disturbances and 

freezing episodes 
Inertial sensors (accelerometers and gyroscopes) are often used for gait pattern 

classification and activity recognition (Najafi et al., 2003; Han et al., 2003; Liu et al., 

2007). In order to classify the gait or detect freezing, most algorithms use spectral 

analysis of signals from triaxial accelerometers placed on various parts of the lower 

body (Nyan et al., 2006; Wand et al., 2007; Zabaleta et al., 2009). Some 

investigations suggest the analysis of electromyographic profiles as a method to 

predict FOG (Nieuwboer et al., 2004). However, these studies do not offer proper 

FOG type classification. 

In this section, we describe three methods for recognition of FOG episodes. The 

fist one is based on FSR sensors. It is simple, yet efficient algorithm for recognition of 

gait disturbances provoked by FOG episodes. The second and third methods are based 

on inertial sensors. The second method is the most sophisticated. Besides recognition 

of gait disturbances, it also provides their classification (by discriminating regular 

walking, small steps, shuffling, intentional standing, festinations, or akinesia). The 

third method provides spectrum analysis of the recorded gait sequence, presented in a 

form of spectrogram. It is not designed as an expert system, but clinician can interpret 

change of leg segments frequencies and interpret the data according to them.  

1. Gait disturbances and FOG recognition based on FSR sensors 

We have developed a simple method for the detection of gait disturbances 

provoked by FOG episodes (Popovic et al., 2009b; Djuric-Jovicic et al., 2009b; 

Djuric-Jovicic et al., 2010a). This method is based on Pearson’s correlation between a 

selected regular (“normal”) stride and the entire gait sequence. Our choice to apply 

the correlation analysis as a method to detect gait disturbances was based on the 

theory considered by Rodgers and Nicewander (1988), and Aldrich et al. (1995). The 

Pearson’s correlation coefficient (PCC) is a measure of the linear dependence 

between two signals. If the two signals have the same shape, the coefficient is 1. For 

the gait, given its quasiperiodic nature, the correlation between a “normal” stride and 

the rest of the strides should decrease during gait disturbances typical for patients with 

PD, such as smaller steps, shuffling, festinations, and complete akinesia.  
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Consequently, our hypothesis was that FOG may be detected as time intervals 

when the PCC diminishes from values that are typical for normal locomotion.  

Experiment setup and recording protocol 

By using force sensing resistors placed under heel, metatarsals, and toes area of 

both feet, we recorded force profiles from nine PD patients (7 males and 2 females, 

age: 70.4 ± 7.9). All patients reported a clinical history of FOG episodes. The 

experiments were performed at the Institute of Neurology, Clinical Centre of Serbia. 

The study was performed in accordance with the ethical standards of the Declaration 

of Helsinki. Institutional Ethics Committee approval was obtained and participants 

gave informed written consent prior to the inclusion in the experiment.  

Patients were asked to stand up from the chair placed in the corridor, walk 

toward the room, pass a doorway, turn 180° to the left (U-turn), and walk the same 

route back, ending with a turn to sit back in the chair, as shown in Figure 7.1. The 

complex path included gait initiation, doorway passes, a U-turn, and a destination. 

The distance to walk was approximately 13 meters in each direction. Patients were 

asked to complete two trials separated by a rest period of at least 10 minutes. All 

experiments were recorded with video camera. Clinicians used videos to identify gait 

disturbances and FOG episodes (type and duration), and these data were further used 

for validation of our method. 

 

Figure 7.1. - Walking protocol. Patients were asked to stand up from the chair placed in the corridor, 

walk toward the room, pass a doorway, turn 180° to the left (U-turn), and walk the same route back, 

ending with a turn to sit back in the chair. 
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Method 

We estimated ground reaction force profiles based on signals recorded form 

force sensitive resistors (FSR) placed under heel, metatarsal, and toe areas. Ground 

reaction force (GRF) was normalized with respect to its maximal value within each 

gait record. 

For each recorded gait sequence, one stride from the sequence of “normal” 

locomotion was selected, and we used this stride to compute the Pearson’s correlation 

coefficients with the entire gait record. Strides from the GRF records yielding 

Pearson’s peaks that substantially deviated from ±1 were considered to be “irregular”. 

We hypothesized that the decrease of these peaks was the result of gait disturbances, 

such as FOG. 

Video recordings were used for the validation of our method. The computed 

PCC was plotted in parallel to the video signal and GRF record. Visually identified 

FOGs from the video were compared and confirmed with those determined via PCC 

(GRF). We compared the duration of FOG intervals determined by the two methods, 

and the relative difference in duration was estimated as videopccvideo ttt )( −=Δ , and 

reported as a percentage. 

An example of freezing of gait (FOG) detection using Pearson’s correlation 

coefficient (PCC) is shown in Fig. 7.2. The top bar shows locomotion examined from 

video with recognized FOG episode (yellow dotted bar). The middle panel shows the 

ground reaction force calculated from FSRs. One “normal” stride from the sequence 

is highlighted by the red line. The result of computed PCC between the highlighted 

stride and the entire recorded sequence is shown in the bottom panel. A linear 

envelope (dashed line) was created from PCC peaks with values under ±1. 
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Figure 7.2 –An example of FOG detection using PCC analysis. Middle panel shows the ground 

reaction force of the entire sequence and one “normal” stride (red line). Bottom panel: result of 

computed PCC between the highlighted stride and the entire recorded sequence.  

Results 

We analyzed data from 24 episodes of FOG in 9 patients with advanced PD. An 

example of the PCC-based evaluation of freezing episodes in relation to several 

different obstacles is presented in Figure 7.3. This procedure involved the selection of 

a “normal/regular” step (thick red line) from a plot of ground reaction forces (upper 

panel) followed by the computation of the PCC (lower panel). During normal 

walking, PCC values oscillated between ±1, and just before the obstacles ±1 peaks 

were observed. This result occurred six times during this record, as shown in 

Figure 7.3. These times were compared to the times of FOG episodes estimated from 

the video (Figure 7.3, yellow bars at bottom). The relative difference for 6 FOG 

episodes was, at most, 0.6%. Figure 7.3 also illustrates various irregular freezing 

patterns. Akinetic freezing was observed before the door; “short strides” were 

observed in four instances (both times before the line, approaching the door after U-

turn. and approaching the chair); and asynchronous complex movement, followed by 

“short strides”, was observed during turning.  



 

 117

 

Figure 7.3. Illustration of the PCC method in different walking situations. Upper panel: ground reaction 

force with one “normal/regular” stride selected (thick red line). Lower panel: results of computed PCC 

between selected “normal” stride and the entire gait sequence. Bottom bar: FOG episodes identified 

from video recordings. 

2. FOG recognition and classification based on inertial sensors 

The SENSY algorithm for trajectory reconstruction, described in chapter 5, was 

upgraded to recognize and classify gait deformities and freezing episodes: 

festinations, shuffling, short steps, and akinesia (Djuric-Jovicic et al., 2010b). The 

upgrade includes applying rule-based thresholding classification of the stride length, 

stride time, speed, and frequency of the stride. 

Finding the optimal way to describe the stride spectrum by one numerical value 

was a challenging task. Considering the nature of FOG episodes, which could be 

manifested on one leg segment and absent on the other, we decided to follow all three 

segments (thigh, shank, and foot). As signals of interest, we selected the axes 

describing vertical accelerations. After calculating the power spectrum of the 

accelerometer signals for each stride, we needed to describe it by one numerical 

value. Chung et al. (2008) performed activity classification (standing, walking, 

running) based on the vertical acceleration component by analyzing the area under the 

signal magnitude and median frequency of the spectrum. The median frequency is 

defined as the frequency which divides the area of the power spectrum into two equal 

parts. The area under the signal magnitude was used to discriminate standing from 

moving, and this parameter combined with median frequency was used for 

discrimination of walking and running. We compared the performance of the median 

frequency with the mean frequency (frequency at which the average power within 
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epoch is reached), the peak frequency (frequency at which the maximum power is 

reached), and the mean power frequency (the average power of power spectrum 

within epoch), as shown in Fig. 7.4. The median frequency seems to provide the best 

results for this application. Therefore, we applied a similar procedure as in Chung et 

al. (2008) to differentiate the akinesia from FOG with leg trembling. 
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Figure 7.4. Choosing characteristic frequency of the spectrum. Upper panel: shank accelerometer signal 

(vertical axis) in time domain, stride #37. Lower panel: its power spectrum (normalized) and 

characteristic frequencies – median frequency, peak frequency, mean power frequency, and mean 

frequency 

The classification algorithm starts by performing the stride segmentation 

explained in chapter 5. Each stride is then analyzed by using the stride length (sl), 

stride time (st), stride speed (ss), and median frequency of vertical accelerations from 

all three leg segments (mft, mfs, and mff). Gait pattern types are defined as following: 

normal stride, short stride, shuffling stride, FOG with involuntary leg movements (leg 

trembling), and FOG with complete akinesia. 

Each stride is classified as one of these five types, by applying rule-based 

thresholding classification.  

Each stride is presumed as “normal”, and then it is tested for four types of gait 

disturbances. For all four pathological states (gait disturbances) we have heuristically 

selected thresholds for the following parameters: stride length, stride duration, stride 

velocity, and median frequency of the stride spectrum. Normal (typical) values of 
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these parameters are shown in Table 7.1, as well as applied thresholds for rule-based 

classification of FOG episodes. Thresholds for stride length are selected according to 

criteria from literature (Nutt et al., 2011, Plotnik et al., 2012), describing values that 

discriminate shuffling, small strides, and normal strides. Thresholds for other three 

parameters were selected heuristically, based on inspecting recorded data from 

patients with FOG. 

Table 7.1. Typical values, lower and higher thresholds for gait parameters for rule-
based classification  

Gait parameter Normal (typical) THlow THhigh 
Stride length (sl) [m] 0.7-1.3 0.15 (0.2) 0.5 
Stride time (st) [s] 0.8-1.2 0.5 2 
Stride speed (ss) [m/s] 0.5-1.2 0.5 2 
Median frequency (mf) [Hz] /* 5 10 
*depends on a leg segment and the observed axis. 

The decisions about FOG types are made according to rules form Table 7.2. 

Table 7.2. Rule-based classification of gait disturbances for PD patients. 
Gait disturbance Rule (Condition) 
Small stride sl(stride)> THSL,low and sl(stride)<THSL,high 
Shuffling stride sl(stride)< THSL,low and ss(stride)<THSS,low  
FOG with motor 
block (akinesia) 
 

st(stride)> THST,high  and ss(stride)< THSS,low and  
mft(stride)< THMF,high or mfs(stride) <THMF,high or mff(stride)< 
THMF,high 

FOG with leg 
trembling 

sl>THST,high  and ss(stride)< THSS,low and (mft(stride) < 
THMF,high or mfs(stride) < THMF,high or mff(stride)> THMF,high) 

 

Since the stride segmentation is performed from one foot contact with the 

ground to another (next) contact of the same foot with the ground, this means that 

both FOG types (FOG with involuntary movements of the leg segments and FOG 

with complete akinesia) will be captured within a complete stride that will be 

followed by eventual lifting of the foot and swing phase until the next foot contact. In 

this way, the stride length of this stride may belong to any category, depending on the 

way a patient exits the FOG episode. For this reason, the FOG detection and 

classification is based on the analyzing median frequency of the leg segments during 

the stance phase, which provides more reliable results than analyzing the entire stride. 

Higher frequencies indicate festinations, while lower frequencies indicate motor 

blocks, i.e., akinesia. 
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Experiment setup and protocol 

Ten patients with PD and clinical history of FOG were recorded for this study (7 

males, 3 females, age: 64.3 ± 7.4), performed at the Neurology clinic, Clinical Centre 

of Serbia. All patients reported a clinical history of FOG. The study was performed in 

accordance with the ethical standards of the Declaration of Helsinki and all 

participants gave informed written consent prior to participate in the study. 

The sensor system was mounted on the patient (one IMU per each leg segment 

of both legs and FSR clusters integrated in shoe insoles). Patients were asked to walk 

along the created complex pathway, as illustrated in Fig. 7.5. Each patient was asked 

to start from the red chair where he/she was sitting, to stand up upon a voice 

command and start walking straight towards door 1 (normal door), to pass the door, 

turn left towards door 2 (very narrow), to make U-turn, return through door 2, then to 

go straight along the corridor, where he would pass door 3 (wide door), several strides 

later to make another U-turn, pass through door 3 again, turn left, pass through door 1, 

return to the chair, and sit down. This recording protocol (walking sequences) was 

repeated four times per subject. All walking sequences were recorded with video 

camera. 

 

Figure 7.5. Floor plan and the pathway along which patients are walking.  
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Results 

An example of a recorded sequence from a patient with FOG episodes is 

presented in Fig. 7.6, showing ground reaction forces of both legs obtained from FSR 

signals, which were summed and normalized to their maximal value within the entire 

sequence. Figure 7.6 also shows stride segmentation by red square markers. The 

horizontal bars on the bottom show FOG episodes recognized and labeled from the 

video recording by an experinced clinician, while the arrows mark moments when the 

patient was reaching each expected obstacle in the pathway. 
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Figure 7.6 – Stride segmentation shown on FSR signals, upper panel – left leg, lower panel – right leg. 

Each red square marker represents one recognized stride. Horizontal bars on the bottom show FOG 

episodes recognized by clinician from video recording.  

Based on performed segmentation, and calculated gait parameters, we can 

observe stride-to-stride variability and apply previously defined thresholds and 

classification rules (Fig. 7.7). 
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The results of the performed classification are shown in Fig. 7.8, by applying the 

following color code for each stride: black marker – normal stride, blue marker – 

small stride, green marker – shuffling stride, red marker – FOG with trembling, pink 

marker – akinesia. 
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Figure 7.8. Ground reaction forces for both legs and color-coded stride segmentation which shows the 

following classification: normal strides (black markers), small strides (blue markers), shuffling strides 

(green markers), FOG with trembling (red markers) and FOG with motor blocks (pink markers).  

Clinical tool 

The described stride classification is merged with the algorithm for the stride 

reconstruction (explained in chapter 5), which resulted in an illustrative clinical tool 

that allows inspection of the subject’s movement and trajectory reconstruction with 

highlighted gait disturbances. 

This tool plots the subject’s 3-D trajectory as a stick diagram (Fig. 7.9), one 

“leg” per each stride, and the gait disturbances are color coded in the same way as in 

Fig. 7.8. 
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As explained, for this application, i.e., for detecting gait disturbances, we had to 

record the walking along complicated pathways and to analyze patients’ movements 

in 3-D. For this reason, we had to cancel elimination of the drift from the algorithm 

for 3-D trajectory reconstruction in order to keep all the details of these movements 

and festinations, but also keep all movements provoked by this complex pathway. In 

this way, we traded the precision for trajectory assessment, but this can provide 

clinicians with valuable information about the situation where freezing episode 

occurred.  
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(b) 

Figure 7.9. Illustration of patient’s 3-D trajectory with recognized and classified FOG episodes, shown 

by color coding. Comparison of (a) Left leg and (b) right leg show asymmetry of the present gait 

disturbances. 

The algorithm marks freezing episodes by different colors and indicates gait 

sequences that should be studied and analyzed more carefully.  

The changes in the gait pattern were present at the beginning of the sequence 

(start hesitation), which is shown at (0,0,0) coordinate. The patient stopped after the 
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first step. Further on, he experienced gait disturbances before reaching door 1 

(shuffling steps). After passing though the door 1, patient had another FOG episode 

where he made sudden stop (motor block). After start hesitation, we proceeded 

towards door 2, where he had another FOG episode (motor block). Passing through 

doorway was followed by very short strides and then he made a U-turn. He proceeded 

through the hallway and through the door 3, and made another U-turn where he 

stopped. After that, he started walking towards door 1, which manifested as regular 

gait until re reached the door where he exhibited FOG with leg trembling and nearly 

lost his balance at the door. After this episode, proceeded forward and returned to the 

chair. These FOG episodes are also identified by our method, as it can be seen from 

Fig. 7.9., proving this method to be valuable FOG assessment tool. 

3. Gait assessment by spectrogram 

As explained in introduction of this chapter, PD patients may exhibit changes in 

frequencies of the movements. Normal walking is typically characterized with 

frequencies from 0.5 Hz to 3 Hz (vertical shank acceleration), FOG with alternate leg 

trembling typically manifests with tremor in the range from 3 Hz to 8 Hz, while 

patient can also experience motor blocks with no movement at all.  

For this reason, it is especially convenient to show spectrum analysis as a 

function of time, where clinician can observe patient’s changes of stride frequency, 

correlate them to existing obstacles along the path, and measure their duration and 

intensity. Very intuitive visual tool which provides this information is spectrogram, 

calculated from the time signal using the short-time Fourier transform preformed for 

each stride independently. For PD gait assessment application, spectrogram is used as 

a graph with the horizontal axis showing time or number of strides, and the vertical 

axis frequency. There is also a third dimension indicating the amplitude of a particular 

frequency at a particular time, and it is represented by the intensity or color of each 

point in the image. We selected Jet colormap in Matlab, where the low amplitudes are 

represented with cold color tones (starting from navy blue for the lowest amplitude) 

and heading towards warmer colors with amplitude increase (finishing with dark red 

color for the highest amplitude). 
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Figure 7.10. Example of FOG interpretation from spectrogram: FOG episode began as a motor block 

(stride#2) and was followed by festinations episode with frequencies between 5 and 7 Hz (stride#3) 
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Discussion and conclusions 

This study demonstrated three different tools for recognition of gait disturbances 

in PD.  

The first one, based on signals from FSR, performed computing Pearson’s 

correlation coefficient between one “regular” stride and the entire record of ground 

reaction forces from the patient’s foot. It was sensitive to various freezing patterns, 

such as sudden akinetic posture with or without leg trembling, as well as to small 

strides or shuffling. The method can not distinguish between these two motions. 

However, the advantage of this method is that it only requires FSR sensors which can 

be integrated in shoe insoles, and this would be sufficient to give a clinician an 

objective evaluation of the frequency and duration of FOG episodes. These FSR 

sensors with accompanying acquisition electronics can be hidden under clothes. 

Therefore, the patient could wear it as a holter monitor during his/her daily routines 

and it would not be visible to others or hinder his/her daily routines. The results of 

this method are published in (Popovic et al., 2010). 

The second method, based on inertial sensors, performed recognition and 

classification of gait disturbances by applying rule-based classification based on stride 

length, stride time, and limb frequencies. This method provides full information about 

FOG episodes and changes in gait patterns which preceded these episodes. However, 

the decisions about the classification of gait disturbances are sensitive to threshold 

values and prone to errors. Namely, some episode might be missed due to having 

strict thresholds, the observed parameter can have the value very close to the assigned 

threshold, but this would not satisfy the mathematical condition for classification to 

corresponding gait disturbance. Therefore, this final visualization tool (Fig. 7.9) 

should be considered in combination with stride-to-stride variability curves (Fig. 7.7) 

with shown thresholds, and according to them clinician should change the threshold 

of the critical gait parameter. Although this could be easily applied in practice, 

significant improvement of the method would include automatic threshold adaptation. 

Nevertheless, this study is still going on and these results should be confirmed when 

we collect significant number of patients for statistics. 

The third method, based on inertial sensors, performed gait pattern analysis by 

spectrogram. This illustrative tool is easy to interpret and provides clinician necessary 
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information about the temporal changes of the frequencies of the lower limbs. This 

method discriminates walking, FOG with leg trembling, and FOG with motor block. 

This provides clinician enough information about walking unsteadiness. Results of 

this method were shown at Symposium of Clinical Neurology (Djuric-Jovicic et al., 

2010). 

When it comes to patients with PD, gait analysis performed in clinical 

environment frequently doesn’t actually capture a patient’s real state i.e., gait pattern. 

Since the patients are aware their gait is being observed, they often (consciously or 

subconsciously) change their pattern, by trying to walk better, or to emphasize their 

movement disorders. Therefore, having gait assessment system which could be used 

in home environment, as a holter monitor, would provide clear and objective image 

about patient’s state, as well as frequency and duration of experienced gait 

disturbances. This could be arranged by simple hardware adaptation, allowing sensor 

units to store data internally, instead of sending it to remote PC. SENSY software can 

be used as a software platform for this application, with a performed upgrade related 

to classification of FOG episodes. 



 

 131

Gait analysis for patients with hemiplegia  
The hemiplegia, which commonly follows neurological conditions such as a 

stroke, traumatic brain injury, rupture of an aneurysm or a vascular malformation, 

reduces patients' ability to walk. The primary goals of patients with hemiplegia 

include being able to walk independently and to manage to perform their daily 

activities from (Dittuno et al., 2005). The restoration of walking continues to be a 

major goal of rehabilitation for patients with hemiparesis. The success of 

rehabilitation process depends on many factors, including the severity of motor 

impairment and gait dysfunction, as well as intensity, specificity, and duration of the 

provided interventions. 

SENSY system was used for assessment of the recovery of gait by providing 

objective evaluation and quantification of gait parameters and gait kinematics (Djuric-

Jovicic et al., 2010c). By using the proposed system, it is possible to have comparison 

of patient’s state before and after the therapy, and assessment of walking with 

different assistive devices (e.g., cane and Walkaround). SENSY was also used in 

synergy with EMG systems, and with electrical stimulators for functional electrical 

therapy (for sensor driven stimulation and assessment of FES effects). In the same 

way, SENSY was used for patients with various injuries that resulted in impaired 

walking abilities. The goal of this study was to provide gait parameters as a new 

objective method to assess rehabilitation effects. 

Recording protocol 

The proposed gait analysis system was used for gait assessment for patients with 

hemiplegia who were hospitalized at the Rehabilitation clinic “Dr. Miroslav Zotovic”, 

Belgrade, Serbia.  

The sensor setup comprised six IMUs (one per each leg segment of both legs) 

and FSRs integrated in shoe insoles, placed under heel, metatarsal and toe areas 

(Fig. 7.12). 
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Figure 7.12. SENSY clinical setup, assessment of the hemiplegic patients.  

We recorded signals from 22 patients with hemiplegia (age: 55±11 years, Fugl-

Meyer score (FM) for lower extremities: 22±5 out of 34). The inclusion criteria for 

recruiting patients were the ability to stand on the paretic leg with some support, to be 

cognitively ready to understand the instructions, and without other neurological 

deficits. All subjects signed the informed consent approved by the local ethics 

committee. 

Subjects were asked to walk with their natural pace and to use the assistance 

they regularly use (therapist, cane, Walkaround). We recorded four walking 

sequences per assistive device for each subject. Walking was recorded in a 10 m long 

and a 3 m wide hallway, without any visual obstacle, providing clear space for 

continuous walking.  

All experiments were recorded with a video camera in parallel.  

Quantifying rehabilitation progress/success 

Assessment protocol for this part of study included gait recording at the 

beginning of rehabilitation process, follow-up three weeks after the beginning of 

therapy, and then six months after therapy (Fig. 7.13).  
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Figure 7.13. Therapy follow-up, comparison of ground reaction forces and joint angles before therapy, 

three weeks later and six months since the beginning of therapy. 
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Figure 7.14. Therapy follow-up, comparison of ground reaction forces and joint angles before and after 

therapy (6 months later). Horizontal axes show that time interval of one stride before therapy (grey 

areas) corresponds to two and a half strides after therapy (red lines). 
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Table 7.3. Therapy follow-up, comparison of gait patterns before, after three weeks of 
therapy and after the therapy (6 months later). 

Before therapy 
(average±std.dev) 

Follow-up 
(average±std.dev) 

After therapy 
(average±std.dev) 

Gait parameters Left/Total Right* Left/Total Right* Left/Total Right* 
Cadence 
[stride/min] 27,10 / 58.44 / 76,19 / 

Stride Length [m] 0,90±0,09 / 0.82±0.11 / 0,99±0,05 / 
Step Time Dif [s] -0,10±0,23 / 0.09±0.04 / -0,06±0,04 / 
Cycle Time Dif 
[s] -0,08±0,19 / -0.01±0.06 / 0,01±0,03 / 

Speed [m/s] 0,26±0,01 / 0.45±0.06 / 0,71±0,03 / 
Step time [s] 1.78±0.20 1.67±0.05 0.88±0.04 0.97±0.03 0.73±0.02 0,67±0.02 
Stride time [s] 3.45±0.18 3.37±0.13 1.85±0.06 1.85±0.05 1.40±0.03 1.4±0.03 
Swing cycle [%] 18.57±2.23 18.31±1.25 32.25±1.46 31.31±2.04 33.72±1.53 37.94±1.32 
Stance cycle [%] 81.43±2.23 81.69±1.25 67.75±1.46 68.69±2.04 66.28±1.53 62.06±1.32 
Single supp. 
cyc.[%] 17.65±0.9 19±2.17 31.42±1.94 32.49±1.97 38.25±1.56 33.91±1.17 

Doub. supp. 
cyc.[%] 63.78±2.94 62.69±3.12 36.33±2.62 36.2±2.73 28.03±1 28.15±2.05 

* paretic leg. 

Table 7.4. Therapy follow-up, comparison of outputs for three clinical scales, before 
therapy, after three weeks of therapy and after the therapy (6 months later). 

Before therapy Follow-up After therapy 
Clinical scale BI FM BB BI FM BB BI FM BB 
Score 94 30 46 100 32 52 100 33 55 
* Bartel index (BI), Fugl-Meyer score (FM), Berg Balance scale (BB) 

The results indicated that the gait functions of the patient were improved 

considerably after rehabilitation therapy.  

The numerical values of the gait parameters are shown in Table 7.3. As it can be 

seen from the Table, the patient increased speed by increasing stride length and 

cadence, and shortening stride time. Furthermore, the rehabilitation increased 

symmetry between the healthy and the paretic side, which can be seen from the step 

and stride time differences. Significant improvement can be noticed in the first 

follow-up, three weeks after the beginning, where the swing and stance ratio 

improved and became closer to the ratio typical for healthy gait pattern (Langhorne et 

al., 2011). Improvement of the gait functions can also be notices from the decrease of 

variability (expressed as standard deviations) of the step and stride time differentials, 

stride time, and swing/stance phases. However, perhaps the most significant 

parameters which testify the improvement of the stability and gait functions are the 

single-support and double-support cycle time, expressed as percentages of the gait 

cycle. The double support cycle decreased after three weeks rehabilitation and then 



 

 135

slowly continues the trend, which is confirmed in the second follow-up, six months 

after the beginning of therapy. 

Significant improvements are also present in the range of joint angle 

flexions/extensions, as shown in Fig. 7.14.  

As the result, the functional improvement was associated with an increase in 

walking performance (higher speed, higher range of rotations) and an improvement of 

walking regularity (lower gait variability). 

We provided an objective gait assessment, using ambulatory gait analysis, for 

assessing functional recovery for patients after stroke. These results cannot be 

obtained through other clinical evaluations, and complement the clinical scores by a 

useful objective evaluation.  
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Overall investigated clinical applicability of the system 

SENSY was used and tested in many experiments including healthy individuals 

and patients with gait disorders. Until now, we have recorded more than 150 patients 

in total. The description of the experiments, patients’ diagnoses, and the institution 

where the experiments were held are shown in Table 7.5.  

Table 7.5 – List of clinical experiments performed with SENSY system 
Institution Patients 

(Diagnosis) Experiment Patients 
# 

Neurology clinic, KCS, 
Belgrade, Serbia PD Recording gait patterns,  

2xACC SENSY 11 

Children’s Health Care 
Institute, Novi Sad, Serbia 

Cerebral  
palsy 

Recoding gait patterns, 
2xACC SENSY 8 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke Recoding gait patterns, 
2xACC SENSY 7 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 
Comparison of gait patterns when walking 
with different assistive devices, 
2xACC SENSY 

10 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 

Recoding gait patterns – collecting sensor 
data for development of sensory driven 
electrical stimulation for control of 
movements 
2xACC SENSY 

12 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 

Implementation of sensory-driven electrical 
stimulation and follow-up of the effects of 
FES 
2xACC SENSY 

9 

Clinics for physical 
medicine, rehabilitation and 
protetics, Clinical Center, 
Nis, Serbia. 

Stroke 

Implementation of sensory-driven electrical 
stimulation and follow-up of the effects of 
FES 
2xACC SENSY 

11 

Neurology clinic, KCS, 
Belgrade, Serbia 

PD 
Healthy 

SENSY/ Gait Rite Comparison 
2xACC SENSY 

7 pat. 
+ 5 h. 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 

SENSY/ Goniometers  
Validation of angle estimation algorithms for 
pathological gait 
2xACC SENSY 

13 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 
Comparison of walking with and without 
Walkaround (before and after therapy) 
2xACC SENSY 

11 

Neurology clinic, KCS, 
Belgrade, Serbia PD Gait assessment 

ACC+GYRO SENSY 22 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 
Kinematics and polymyography study 
(assistance with cane and Walkaround) 
ACC+GYRO SENSY 

21 

Rehabilitation clinic “Dr. 
Miroslav Zotovic”, 
Belgrade, Serbia 

Stroke 

SENSY/ Goniometers  
Validation of angle estimation algorithms for 
pathological gait 
ACC+GYRO SENSY 

13 

Neurology clinic, KCS, 
Belgrade, Serbia PD Monitoring therapy effects during the day 

ACC+GYRO SENSY 7 

Neurology clinic, KCS, 
Belgrade, Serbia PD  Recording FOG 

ACC+GYRO SENSY 8 
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The table content describes various clinical applications for which the sensor 

system (hardware) was used. Table 7.5 presents our clinical experience. Software was 

being developed in parallel with these experiments, and some of the described 

experiments were used for validation of the algorithms, as shown in Table 7.5. 

As it can be seen from the Table 7.5, SENSY was included in many clinical 

experiments, where system performances were tested and validated. In parallel with 

these recordings, and in collaboration with clinicians and patients, SENSY was 

upgraded and improved to present state. Based on this experience, we designed 

hardware and software in order to help clinicians and increase the quality of gait 

assessment in clinical setting, as well as to decrease the requested time for performing 

analysis. Nonetheless, for clinical measurement studies of movement impaired 

patients, SENSY is a highly efficient, cost-effective assessment tool. 
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8. Graphic user interface for gait 

analysis software  

Based on the methods explained in chapter 5, we have developed gait analysis 

software that provides both quantitative and qualitative evaluation of gait pattern. 

Software outputs include kinematic and kinetics diagrams, animated graphic images 

simulating the patients’ gait at various conditions, spectrum analysis, and spatio-

temporal parameters of gait. 

SENSY software for gait analysis (algorithms and graphic interface) is 

developed in Matlab (MathWorks, USA). The features of this software correspond to 

other advanced commercial gait analysis systems, and its accuracy and performances 

and comparable to other gait analysis systems available on the market.  

 

Figure 8.1 – Initialization of graphic user interface 

Upon software initialization (Fig. 8.1), user is offered to select and import a 

recorded file of interest and it plots recorded raw calibrated data from all sensors. 

User can then choose either to observe complete recorded file or to select the 
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sequence of interest. From this panel user can observe raw data in more details, and 

select or deselect channels from sensor nodes (Fig. 8.2). Also, user can change the 

sequence he wants to observe or zoom in/out the sensor data.  

After the desired sequence is selected, data processing algorithms are performed 

on those data, and user can continue to the next panels that provide the analysis of 

kinematics, kinetics, and calculations of spatio-temporal parameters.  

 

Figure 8.2 – Initial software panel showing original sensor data. 

Kinematics panel comprises analysis of joint angles, segment angles and 

reconstruction of leg trajectories, as shown in Fig. 8.3, 8.4 and 8.5. The kinematic 

diagrams provide information about segment and joint angles, as well as the 

reconstruction of movement (gait) trajectory. These graphs help clinicians 

qualitatively assess time evolution of lower limb movements, variability at different 

phases of gait, symmetry, and ranges of movements. 
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Figure 8.3 –Kinematics panel showing joint angles of the hip, knee, and ankle for both legs. 

 

Figure 8.4 –Kinematics panel showing joint angles of the hip, knee, and ankle for both legs, strides 

plotted over each other showing stride-to-stride variability in time and range of motion. 
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Figure 8.5 –Kinematics panel 2-D reconstruction of leg trajectories, for left and right leg. 

Besides angle estimation, software also provides trajectory estimation through a 

stick diagram which mimics lower limb skeleton performing the same actions as the 

recorded subject. This tool provides visually appealing and easy to interpret 

information about subject’s gait pattern. The animated skeleton (stick diagram) can 

also be seen in 3-D and it can be viewed from arbitrary angles, thereby further helping 

the clinician to interpret the results. 

Kinetics panel shows force profiles, estimation of ground reaction forces 

(horizontal and vertical), as well as spatial visualization of force profiles, as shown in 

Figure 8.5. By clicking the Top View button (or 3-D model button) user can see how 

the forces change in time. Velocity of this presentation can be increased or decreased 

by sliding the vertical bar next to the image. 
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Figure 8.6 – Kinetics panel showing force profiles, ground reaction forces and graphical visualization 

of force profiles. 

In spectrum analysis panel, user can select any accelerometer or gyroscope 

signal (any axis from any segment) and watch its spectrum (FFT) and spectrogram. 

The vertical axis of the spectrogram shows frequency and the horizontal shows 

number of samples (100 samples=1 s) 

 

Figure 8.7 – Spectrum analysis, selected signal in time and frequency domain (left side of panel) and its 

spectrogram (right side of panel) 



 

 143

From the statistics panel, user can observe spatio-temporal gait parameters, their 

average value within selected sequence and standard deviation, as presented in 

Fig. 8.8. The spatio-temporal parameters provide a tool for objective outcome 

measures to quantify the expected gait improvement during rehabilitation of patients, 

monitoring therapy effects, or progress of a disease. Temporal gait parameters are by 

default calculated based on the recognized gait phases from FSRs. However, they can 

also be calculated from inertial sensors if there was a problem with FSRs or FSRs 

were not used for recording.  

Software also offers the possibility to store patient’s data related to the file, 

including name of the patient, date of birth, height/weight, diagnosis, walking 

assistance, etc. After examination, the processed data can be exported to Excel file 

which can be stored in database or attached to patient’s medical chart.  

 

Figure 8.8 – Statistics panel showing average values and standard deviations of spatio-temporal gait 

parameters (left side of the panel). Right side of panel provides export of the processed data to Excel 

file. 
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9. Conclusion and future research  

Contribution of dissertation 
The primary objective of this thesis was to design and validate new methods for 

gait analysis based on signals acquired from inertial sensors which can be used for 

clinical applications (starting hypothesis H1 and H2). 

Through investigated clinical applications the emphasis was put on kinematic 

parameters affected by locomotion disorders in order to provide an objective outcome 

evaluation based on these parameters. The main results and contributions of this thesis 

can be summarized as follows: 

Ambulatory recording system: A specific wireless sensor system based on 

inertial sensors and force sensing resistors was designed. The system is a portable 

ambulatory device with the following design criteria: wearable sensors are 

lightweight, donning and doffing is easy and fast, mounting does not require precise 

positioning, and sensors do not hinder the gait pattern.  

New methods for estimation of segment and joint angles based on accelerometer 

pairs were introduced, different in their complexity, applicability and required sensor 

configuration. The first two methods are based on sensor units with accelerometer 

pairs and their applicability is limited to 2-D (angles in saggital plane), while the third 

method uses combination of accelerometers and gyroscopes in order to estimate 3-D 

kinematics of a subject. 

In the first method, segment and joint angles were estimated by applying band-

pass filtering with cut-off frequency related to subject’s gait pace, i.e., without need 

for integration. In this way, the obtained angles are free from drift. The method was 

validated on 12 healthy subjects walking at various speeds from 0.2 m/s to 2.0 m/s, 
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and 15 subjects with hemiplegia with different levels of gait impairment who were 

walking at their own comfortable pace. The obtained angles were compared to 

goniometers outputs which were used as a reference system. Comparison of the 

outputs of these two systems showed that accelerometer pairs can be used in this way 

with satisfying reliability and precision. However, this method is based on the 

rhytmicity of the gait, it does not proved good results for non-cyclic ambulatory 

movements which are present in more severely impaired gait patterns. 

The second method uses simplex optimization to model the offset by a slowly 

varying function of time (a cubic spline polynomial) and evaluate the polynomial 

coefficients by nonlinear numerical simplex optimization with the goal to reduce the 

drift in processed signals (angles and movement displacements). Besides segment and 

joint angles, this method also provides reconstruction of subject’s trajectory. 

These two methods represent positive answer to thesis hypothesis H1. 

The third method uses transformation matrices for estimation of kinematic 

parameters (angles and trajectories) based on accelerometer and gyroscope sensor 

combination and polynomial fitting to eliminate the drift of the estimated outputs. 

This method is the answer to starting hypothesis H2. 

Based on signals acquired from this sensor system and the proposed methods, a 

specific gait analysis software was designed. The goal of this software is to allow 

quantitative gait analysis for clinicians that would provide them objective evaluation 

of therapy effect or progress of a disease. 

Clinical applications: based on developed algorithms described in chapter 5, two 

independent clinical applications were designed: module for gait assessment of the 

stroke patients with hemiplegia, and module for gait assessment of the patients with 

Parkinson’s disease. These modules allow clinicians to have objective evaluation of a 

patient’s gait pattern, rehabilitation and therapy effects. In this way, clinicians can 

react in time, and change the therapy if needed, and prevent possible near-fall 

situation. These are the confirmations for starting hypothesis H1 and H2. 

For patients with PD, objective measure of gait disturbances directly provides a 

very important tool not only for following progress of the disease but also respond to 

treatments (medicines) and prescribed therapies. Also, since the proposed system 

could be used as a holter monitor, required time for patient to stay in hospital is 

significantly shortened. Patient can be examined during the day and returned home 
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with SENSY standalone holter unit. In this way, clinicians can get real picture about 

patient’s gait disturbances (types and timings) and save money for hospital days. 

These results are affirmative answer to starting hypothesis H3. 

For stroke patients, the proposed system can be used for assessment of walking 

with various assistive devices and orthoses. In this way, the proposed system can help 

clinicians to objectively select optimal walking assistance and provides a proof or a 

measurement of the assistance’s effect. Also, the proposed system can be used for 

assessment of the effects of functional electrical stimulation (FES), which is also time 

consuming part of the rehabilitation process. Providing gait assessment before, during 

and after walking with FES, short-term and long-term following of the therapy’s 

effects helps better planning of the therapy (better planning of stimulation protocol, 

intensity of stimulation, correction of stimulated muscles and also duration of the 

therapy). This application proved our starting hypothesis H4 to be true. 

SENSY should also be used for elderly population, in their annual (routine) 

examination. Following some specific gait characteristics (stride time, stride length, 

double support etc.), SENSY provides more objective view about aging effect and 

possible risks of falling. Responding to this kind of change in time and preventing 

falls (which in elderly population usually end with fractures) and prescribing adequate 

assisting device or similar, objective gait assessment saves patients and money that 

would otherwise be spent on hospital costs for healing fractures.   

In total, SENSY offers quantitative assessment of gait pattern and rehabilitation 

success. In comparison to traditional methods of gait analysis (observational and with 

scales, e.g. Fugl-Meyer), it provides more objective monitoring of patient’s state and 

better quality of service.  

Suitability of the proposed system  

Clinicians in the National Health Service (NHS) in the UK identified the need 

for a widely accessible and valid objective motion analysis tool. A 2003 survey of 

1.826 physiotherapists in the UK revealed that only 23.1% of people with gait 

impairments were measured in gait laboratories. The main reasons cited were that it’s 

too time consuming (41.8%), too expensive (38.8%), and there is a lack of technical 

knowledge (27%). These results were confirmed in a 2009 survey conducted by 

Oxford Brookes University. 
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There are various systems for gait analysis present on the market today. They 

range in accuracy, price, outputs characteristics, applied technology, and suitability of 

clinical applications. The physiotherapist or the hospital clinician would greatly 

benefit from a faster, easy-to-use solution that is also small, lightweight, and 

preferably wireless. Inertial measurement units (IMUs) provide the basis for such a 

clinical tool.  

Our proposed system fulfills major clinical demands. The donning takes in 

average around 3 minutes, and there is a short self-calibration (1s) which does not 

require additional tools or special action. The doffing of the system is around 1min. 

The positioning of the sensors is well described, and the recordings do not depend on 

the precise positioning or orientation with respect to the body segment. The 

recordings can start immediately after donning. Wireless design eliminates all cables. 

The system also comprises instrumented shoe insoles. The mass of units that are at the 

body segment is about 50 g. The units are battery powered (rechargeable) and provide 

up to 3 hours of continuous recording. The distance from the base commute can be up 

to 30 m, and the data transfer is secured and basically noise free. The software 

supports online visualization of data recorded and storing of the data.  

Based on our clinical experience and great number of recorded patients, we 

recognized a necessity for objective quantification of gait impairment and recovery 

(or progress of the disease). For most of the diagnoses, there are functional scoring 

scales that usually detect if some kind of impairment is or isn’t present but there is a 

large gap between those levels. For this reason, it is impossible for clinicians to 

precisely quantify patient's recovery based on these clinical scales, because recovery 

is often a slow process and improvements can be very small and need to be observed 

and recorded in order to optimize therapy.  

Perspective and future research  
The thesis can be extended to the following directions: 

Extending 2-D to 3-D 

The proposed algorithms for kinematics analysis based on accelerometer pairs, 

described in chapters 3 and 4, offer high reliability and accuracy of the estimated 

segment and joint angles. However, these algorithms are limited to 2-D analysis of 
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movements in the sagittal plane. By adding more accelerometers in spatial 

arrangement, these methods could be extended to 3-D analysis, which could be 

beneficiary for some gait deformities which require information about other angles 

besides flexion/extension. 

Movement analysis 

The sensor system could be enhanced by adding 3-D magnetometers to existing 

sensor units. In this way, with the missing azimuth orientation, we could have 

complete 3-D positioning and orientation estimation that would allow more precise 

estimation during turns and better trajectory reconstruction of the complete lower 

limb trajectory (both legs together). Also, signals from magnetometers can be used for 

drift correction, but with careful restrictions regarding the surrounding area i.e., 

presence of ferromagnetic materials that create signal disturbances in the 

magnetometers. 

The proposed sensor system is, as explained, designed as an open platform with 

possibility to include different type of sensors. Besides magnetometers, system could 

also support ultra-sound sensors that could provide clinicians one more important gait 

parameter which is not possible to be assessed by inertial sensors – stride width. This 

parameter can provide insight about patient stability, especially significant in early 

stroke rehabilitation stages. 

Gait analysis 

The gait analysis program, explained in chapter 9, can be used for assessment of 

other gait pathologies. Future extension of the algorithm should focus to automatically 

detect different types of walking and activities of a patient at various conditions and 

focus on long-term outcomes. 

In general, the proposed clinical protocol can be used for other assessment and 

rehabilitation programs related to lower extremity treatments. 

Movement control 

Some parts of developed methods which are applicable in real time can be used 

for gait event detection and movement control by creating rules for functional 

electrical stimulation. This could have many applications, in stroke patient 

rehabilitation, stimulation of the PD patient when he exhibits FOG episode. It could 
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also be extended to other gait pathologies, such as cerebral palsy etc. Furthermore, 

movement control based on these sensors could be used for sports and fitness to 

improve exercise performance and help burning calories, which is an application that 

is becoming more popular each day. 

Holter monitor 

When it comes to patients with PD. gait analysis performed in clinical 

environment frequently doesn’t actually capture a patient’s real state i.e.,gait pattern. 

Since the patients are aware their gait is being observed, they often (consciously or 

subconsciously) change their pattern, by trying to walk better, or to emphasize their 

movement disorders. Therefore, having gait assessment system which could be used 

in home environment, as a holter monitor, would provide clear and objective image 

about patient’s state, as well as frequency and duration of experienced gait 

disturbances. This could be arranged by simple hardware adaptation, allowing sensor 

units to store data internally, instead of sending it to remote PC. SENSY software can 

be used as a software platform for this application, with a performed upgrade related 

to classification of FOG episodes. 

Hardware adaptations: miniaturization and minimization 

Although the proposed system has quite satisfying hardware regarding their 

size, weight, and comfort for their users, there is ever-lasting struggle to decrease their 

size up to invisibility. It is in human nature to want to fit in, i.e., not to look sick or 

unable, or helpless. Therefore, patients often prefer to have assessment hidden as 

much as possible, which directs engineers towards miniaturization and applicability of 

other already existing solutions, such as smart phones with integrated inertial sensors 

and strong platform that could support many computational tasks. 

Besides miniaturization, another goal is minimization of the assessment system. 

Attaching one sensor unit per each leg segment certainly provides detailed and 

reliable information about gait pattern and possible gait deformities. Although the 

proposed system does not hinder patient’s movements, and it is simple and not time 

consuming for donning and doffing, it would be better to use less sensors and to get 

reliable description of the gait pattern. Reduction in number of sensors would allow 

more elegant usage of the sensor system, and decrease number of things clinicians 

have to take care of while mounting and during assessment protocol.  
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Further upgrade of the proposed system combines sensors with actuator system 

for functional electrical stimulation. In this way, sensor data can be used for motor 

control and, in the same time it can perform the assessment of the movement made 

with it. This system is already developed and its architecture and preliminary testing 

are described in journal publication (Jovicic et al., 2012). 
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Gait terminology 

Walking uses a repetitious sequence of limb motion to move the body forward 
while simultaneously maintaining stance stability. 

Each gait cycle is divided to two periods, stance and swing. Stance is the term 
used to designate the entire period during which the foot is on the ground. Stance 
begins with initial contact and ends with toes off which marks the beginning of the 
next phase- swing. The word swing applies to the time the foot is in the air for limb 
advancement. It begins as the foot is lifted from the floor (toe-off) and ends with 
initial contact. 

Stance is subdivided to three intervals according to the sequence of floor contact 
by two feet. Both the start and end of stance involve a period of bilateral foot contact 
with the floor (double support), while the middle portion of stance has one foot 
contact (single support).  

Initial double support begins the gait cycle. It is the time when both feet are on 
the floor after initial contact.  

Single support begins when the opposite foot is lifted for swing.  
Terminal double support is the third subdivision. It begins with floor contact by 

the other foot (contralateral initial contact) and continues until the original stance limb 
is lifted for swing (ipsilateral toe off).  

The gross normal distribution of the floor contacts is 60% for stance and 40% for 
swing. Timing for the phases of stance is 10% for each double support interval and 
40% for single support. Single support of one limb equals swing of the other, as they 
occur in the same time. 

Gait phases 

In order to provide the basic functions required for walking, each stride involves an 
ever-changing alignment between the body and the supporting foot during stance and 
selective advancement of the limb segments in the swing. These reactions result in a 
series of motion patterns performed by the hip, knee and ankle. Each stride contains 
eight functional patterns called sub phases of the gait cycle. 
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Analysis of a person’s walking pattern by phases more directly identifies the 
functional significance of the different motions occurring at the individual joints. The 
phases of gait also provide a means for correlating the simultaneous actions of the 
individual joint into patterns of total limb function. This is particularly important for 
approach for interpreting the functional effects of disability. The relative significance 
of one joint’s motion compared to the other’s varies among the gait phases.  

Each of the eight gait sub phases has a functional objective and a critical pattern of 
selective synergistic motion to accomplish this goal. The sequential combination of 
the phases also enables the limb to accomplish three basic tasks: weight acceptance 
(WA), single limb support (SLS) and limb advancement (LA). 

Weigh acceptance begins the stance period and uses the first two sub phases, initial 
contact and loading response. Single limb support continues stance with the next two 
gait sub phases, mid stance and terminal stance. Limb advancement begins in the 
stance sub phase (pre-swing) and then continues through the three sub phases of 
swing, initial swing, mid swing, and terminal swing. 

 

Figure A.1 - Gait cycle with sub phases of gait  

Weight acceptance 

For this task, three functional patterns are needed: shock absorption, initial limb 

stability, and the preservation of progression. The challenge is the abrupt transfer of 
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the body weight onto a limb that has just finished singing forward and has an unstable 

alignment. 

1. Initial contact 

Interval: 0-2% of GC 

This phase includes the moment when the foot just touches the ground. The joints 

postures present at this time determine the limb’s loading response pattern. 

Gait pattern (for normal gait): The hip is flexed, the knee is extended, the ankle is 

dorsiflexed to neutral. Floor contact is made with the heel. The other limb is at 

the end of terminal stance. 

Goal: The limb is positioned to start stance with a heel rocker. 

2. Loading response 

Interval: 0-10% of GC 

This is the initial double support period. The phase begins with initial floor 

contact and continues until the other foot is lifted for swing. 

Gait pattern (for normal gait): Using the heel as a rocker, the knee is flexed to 

shock absorption. Ankle plantar flexion limits the heel rocker by forefoot contact 

with the floor. The opposite limb is in the pre-swing phase. 

Goals: Shock absorption, weight-bearing stability, preservation of progression 

 

Single limb support 

Lifting the other foot for swing begins the single limb support interval for the stance 

limb. This continues until the opposite foot again contacts the floor. During the 

resulting interval, one limb has the total responsibility for supporting body weight in 

both the sagittal and coronal planes while progression must be continued, Two phases 

are involved in single limb support: mid stance and terminal stance.  

3.  Mid stance 

Interval: 10-30% of GC 

This is the first half of the single limb support interval. It begins as the other foot 

is lifted and continues until body weight is aligned over the forefoot. 

Gait pattern (for normal gait): In the first half of single limb support, the limb 

advances over the stationary foot by ankle dorsiflexion (ankle rocker) while the 

knee and hip extend. The opposite limb is advancing in its mid swing phase.  

Goals: progression over the stationary foot and limb and trunk stability. 

4. Terminal stance 
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Interval: 30-50% of GC 

This phase completes single limb support. It begins with heel rise and continues 

until the other foot strikes the ground. Throughout this sub phase body weight 

moves ahead of the forefoot. 

Gait pattern (for normal gait): During the second half of single limb support, the 

heel rises and the limb advances over the forefoot rocker. The knee increases its 

extension and then just begins to flex slightly. Increased hip extension puts the 

limb in a more trailing position. The other limb is in terminal swing. 

Goal: progression of the body beyond the supporting foot. 

 

Limb advancement 

In order to perform the limb advancement, preparatory posturing begins in stance. 

Then the limb swings through three postures as it lifts itself, advances and prepares 

for the next stance interval. Four sub phases of the gait cycle are involved in this: pre-

swing (end of stance), initial swing, mid swing, and terminal swing. 

5. Pre-swing 

Interval: 50-60% of GC 

This final phase of stance is the second (terminal) double support interval in the 

gait cycle. It begins with initial contact of the opposite limb and ends with 

ipsilateral toe-off. Other names for this sub phase are weight release and weight 

transfer. The limb is unloaded and the limb uses its freedom to prepare for the 

rapid demands of swing.  

Gait pattern (for normal gait): Floor contact by the other limb has started terminal 

double support. The reference limb responds with increased ankle plantar flexion, 

greater knee flexion and loss of hip extension. The opposite limb is in loading 

response.   

Goal: to position the limb for swing. 

6. Initial swing 

Interval: 60-73% of GC 

This first sub phase of the swing is approximately one third of the swing period. 

It begins with lift of the foot from the floor and ends when the swinging foot is 

opposite the stance foot. 



 

 164

Gait pattern (for normal gait): The foot is lifted and limb advanced by hip flexion 

and increased knee flexion. The ankle only partially dorsiflexes. The other limb is 

in early mid stance. 

Goal: Foot clearance from the floor and advancement of the limb from its trailing 

position.  

7. Mid swing 

Interval: 73-87% of GC 

This second phase of the swing period begins as the swinging limb is opposite the 

stance limb. The phase ends when the singing limb is forward and the tibia is 

vertical (i.e., hip and knee flexions postures are equal). 

Gait pattern (for normal gait): Advancement of the limb anterior to the body 

weight line is gained by further hip flexion. The knee is allowed to extend in 

response to gravity while the ankle continues dorsiflexing to neutral. The other 

limb is in late mid stance. 

Goals: Limb advancement and foot clearance from the floor. 

8. Terminal swing 

Interval: 87-100% of GC 

This final phase of the swing period begins with a vertical tibia and ends when 

the foot strikes the floor. Limb advancement is completed as the leg (shank) 

moves ahead of the thigh.  

Gait pattern (for normal gait): Limb advancement is completed by knee 

extension. The hip maintains its earlier flexion, and ankle remains dorsiflexed to 

neutral. The other limb is in terminal stance. 

Goals: Complete limb advancement and to prepare the limb for stance.  

Spatio-temporal gait parameters 

The gait cycle is also identified by the term stride which describes actions of 

one limb. The duration of a stride is the interval between two sequential initial floor 

contacts by the same limb (i.e., right IC and the nest right IC). 

Step refers to the timing between the two limbs. There are two steps within each 

stride (gait cycle). At the midpoint of one stride the other foot contacts the ground to 

begin its next stance period. The interval between an initial contact by each foot is 

step (i.e., left and then right).  
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Stride length: the distance between the heel points of two consecutive strides 

(left to left, right to right). (The unit of measure is meters.)  

Step length: the distance from the heel center of the current footprint to the heel 

center of the previous footprint on the opposite foot. 

Stride time: the time elapsed between the first contacts of two consecutive 

footfalls of the same foot.  Also called gait cycle time. 

Step time: the time elapsed from first contact of one foot to first contact of the 

opposite foot.  

Ambulation Time: the time elapsed between first contact of the first and the 

last footfalls. 

Cadence: number of strides per minute. 

Base width: the distance from heel center of one footprint to the line of 

progression formed by two strides of the opposite foot. This parameter is not possible 

to be estimated by inertial sensors.  

Toe in/Toe out: It is the angle between the line of progression and the midline 

of the foot. Angle is zero if the geometric midline of the foot is parallel to the line of 

progression; positive, toe out, when the midline of the footprint is outside the line of 

progression and negative, toe in, when inside the line of progression. (The unit of 

measure is degrees.) This parameter can not be estimated without magnetometers. 

Single support: the time elapsed between the last contact of the current footfall 

to the first contact of the next footfall of the same foot. It is measured in seconds and 

expressed as a percent of the Gait Cycle time of the same foot. 

Double Support: The two periods when both feet are on the floor, are called 

initial double support and terminal double support. Initial double support occurs 

from heel contact of one footfall to toe-off of the opposite footfall. Terminal double 

support occurs from opposite footfall heel strike to support footfall toe-off. Total 

double support is the sum of the initial double support and the terminal double 

support.  

Kinematic gait parameters 

Kinematic variables describe the extent, speed, and direction of movement of 

joints or body segments. They can be divided to translatory movements 

(displacement, velocity, and acceleration) and rotation movements (angular 
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displacement, angular velocity, and angular acceleration). Definition of these angles 

and various methods for their assessment are described in chapter 2. 

Gait event detections 
In order to estimate gait parameters, we need to have reliable and accurate 

estimation of the characteristic gait events such as heel contact and toe off which 

delimit swing and stance phases. There are numerous ways to do it, but one of the 

easiest is by applying thresholds to heel switch or FSR data (Djuric et al., 2008). The 

alternative is to use inertial sensors, usually from IMU placed on foot or shank 

segment, and to apply different processing methods for detection of these 

characteristic gait events (Sabatini et al., 2005; Kotiadis et al., 2010). 

Gait event detection from force sensors represents simpler and more reliable 

technique, especially for applications for pathological gait, where is difficult to adapt 

rules or thresholds for IMU-based gait event detection methods.  

For our applications, FSRs were used to detect gait phases by summing their 

signals from one leg, normalizing to sum’s maxima and applying threshold (THfsr) at 

5% of the normalized sum. Intervals where the signal is beyond THfsr are considered 

to belong to the stance phase, while the other intervals (normalized sum bellow 

THfsr) are considered to be the swing phase. 

850 900 950 1000 1050 1100 1150 1200
0

0.2

0.4

0.6

0.8

1

F
S

R
s

 

 
fsrsum mtt1 mtt5 heel

 

Figure A.2. Gait event detection: threshold is applied to normalized FSR signals in order to detect heel 

contact (triangular marker pointing downwards), heel off (square marker), and toe off* moments 

(triangular marker pointing upwards).  

By applying previously given definitions of gait phases and temporal gait 

parameters to the detected gait events, SENSY calculates temporal gait parameters for 

each stride within recorded sequence. 
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Gait Phases Nomenclature 
Traditional nomenclature: the events taking place during the phase are named, 

for the most part, according to the events that take place at the foot, for example, heel 

strike. 

Ranchos Los Amigos nomenclature: the events taking place during the phases 

are named, for the most part, according to the purpose of the phase, for example, 

initial contact.  

Terms used to describe gait for observational analysis 
Traditional Rancho Los Amigos 

STANCE PHASE 
Heel strike: The beginning of the stance 
phase when the heel contacts the ground 
 
Foot flat: The portion of the stance phase 
that occurs immediately after the heel 
strike, when the sole of the foot contacts 
the ground 
Midstance: The point at which the body 
passes directly over the reference 
extremity 
 
 
 
Heel off: The point following midstance 
at which time the heel of the reference 
extremity leaves the ground 
 
Toe-off: The point after heel-off when 
only the toe of the reference extremity is 
in contact with the ground. 

Initial contact: The beginning of the 
stance phase when the heel or another 
part of the foot contacts the ground 
Loading response: The portion of the 
stance phase from immediately after 
initial contact until the contralateral 
extremity leaves the ground. 
Midstance: The portion of the stance 
phase that begins when the contralateral 
extremity leaves the ground and ends 
when the body is directly over the 
supporting limb. 
Terminal stance: The portion of the 
stance phase from midstance to a point 
just prior to initial contact of the 
contralateral extremity. 
Preswing: The portion of the stance from 
initial contact of the contralateral 
extremity to just prior to the liftoff of the 
reference extremity. This portion includes 
toe-off. 

 

Terms used to describe gait for observational analysis 
Traditional Rancho Los Amigos 

SWING PHASE 
Acceleration: The portion of beginning 
swing from the moment the toe of the 
reference extremity leaves the ground to 
the point when the reference extremity is 
directly under the body. 
Midswing: Portion of the swing pause 
when the reference extremity passes 
directly below the body. Midswing 
extends from the end of acceleration to 
the beginning of deceleration. 

Initial swing: The portion of the swing 
from the point when the reference 
extremity leaves the ground to maximum 
knee flexion of the same extremity. 
 
Midswing: Portion of the swing phase 
from maximum knee flexion of the 
reference extremity to a vertical tibial 
position. 
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Deceleration: The swing portion of the 
swing phase when the reference extremity 
is decelerating in preparation for heel 
strike. 

 
Terminal swing: The portion of the swing 
phase from a vertical position of the tibia 
of the reference extremity to just prior to 
initial contact. 

From O’Sullivan, SB and Schmitz, TJ: Physical Rehabilitation: Assessment and 

Treatment, ed 3. FA Davis, Philadelphia, 1994, p.169.  
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Kinematics and Kinetics curves: Normal gait pattern  

 

Figure A.3 Joint angles of hip, knee, and ankle joint.Typical kinematic curves for healthy gait 

 

Figure A.4 Ground reaction forces: load force (vertical reaction force) and friction force (horizontal 

reaction force). Typical force profiles for healthy gait 
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SENSY – Data acquisition system 
Software for signal acquisition is developed in CVI LabWindows (National 

Instruments, USA). This software is compatible with Windows operative system, easy 

to install and use, and does not require any additional installation. It provides online 

monitoring and automatic storing of data in ASCII format. Although the extension of 

files is *.zgz, they can be opened with Notepad or Wordpad, or imported to Matlab or 

Excel. 

Graphic interface of the acquisition software is user-friendly and comprises 8 

graphic panels showing signals from sensors during acquisition, as shown in Fig. A.5. 

The upper panels display signals collected from right leg and lower panels those from 

left leg. Left panels (upper and lower) show data collected from force sensors placed 

in the shoe insoles (or attached to feet or shoes). The other panels, from left to right, 

display data from sensor nodes attached to thigh, shank and foot segments, 

respectively. 

 

Figure A.5 – Running SENSY Data acquisition software. 

The horizontal axes are showing the number of samples and the vertical axes the 

value of the samples in a 12 bit resolution. 

Accelerometers integrated in sensor units can be used either in 2g or 6g 

resolution, which can be selected for each IMU/leg segment individually by sliding 

2g/6g bar in the upper right corner of the corresponding panel. For subjects who walk 

with stronger foot impacts, it is suggested to use 6g for foot sensors so the sensors 

wouldn’t go to saturation. For upper segments, it is recommended to use 2g (i.e., 
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higher resolution). Although the resolution is changed, the values displayed on graphs 

and saved in the file are in the same range because they are automatically scaled.  

An important feature of the software is data delay status bar, placed under each 

panel. This bar shows status of data transmission for each IMU. The intensity of the 

delay is shown in colors - green, yellow, and red. The intensity of the bar graph is 

directly proportional to the data delay. If the delay is increased, the color changes 

from green through yellow to red. If the delay reaches its maxima, data will be lost 

and bar graph will be circled with red line (Fig. A.6). 

 

Figure A.6 – Data delay status bar: green status showing there is no data delay , yellow status showing 

there is some transmission delay and the buffer is accumulating unsent data, red status indicates that the 

buffer is nearly full, and circled red status showing the buffer is full and all future data will be lost. 

This software is compatible with Windows operative system, easy to install and 

use, and does not require any additional installation. Most importantly, it is not space 

or memory demanding, so it can be use from PC with any configuration. Since it 

provides online monitoring and automatic naming (“date_time”) and storing in its 

own folder in Program files, there is no risk of loosing data and users can be devoted 

to observing subject and/or acquired signals, without focusing on managing the 

software. 
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